図2・4は船の総トン数対レーダー反射断面積σ(m2)のグラフであり、図2・5は船の総トン数対有効高He(m)のグラフである。
これらの推定曲線は、トン数の分かった船の反射強度を追跡測定して、R4に反比例する曲線部のレベルからσを計算し、反射強度が急激に下がる曲線部分との変曲点の距離からHeを計算して、その船のσとHeとして両対数グラフ上にプロットすることによっている。そしてこのグラフ上にトン数の異なる多くの船について測定した値をプロットして、最小自乗法によって得られた曲線に最も近くて判りやすい曲線から得られたものである。
2・3 レーダーの最小探知距離
レーダーの最小探知距離とは、PPI画面の上で自船からの距離を測定し得る最小の距離のことで、1]自船レーダーのパルス幅(パルスの長さ)、2]PPI用ブラウン管の最小輝点、3]アンテナの垂直方向指向性(特にアンテナが高い位置に取り付けられた場合)等で決まることになる。また、海が荒れているときは海面反射が強くなり、その雑音のために小物標からの反射が隠されて最小探知距離が遠くなることに注意しなければならない。
1] 自船レーダーのパルス幅(パルスの長さ)
パルス幅とは、発信パルスが続く時間のことであるが、アンテナからパルス状の電波が発信されると、発信が続いている時間すなわちパルス幅に相当する長さの電波が空中を伝搬して行くことになる。例えばパルス幅が0.25(=1/4)μsであれば、3×108(m/s)×0.25(μs)=75(m)の長さの電波が飛んで行くことになる。そのレーダーの波長が3cmであれば、この電波が空中を飛んでいくようすは、一両の長さが3cmの車両を連結して、先頭から後尾までの長さが75mあるという列車が空中を飛んで行くようであるのでパルストレーン(pulse train)といっている。アンテナの下には自船の船体があり、その船体から75mの半分すなわち37.5mの距離以内にある物標からの反射波は、自船の船体からの反射波とつながってしまうから識別できないことになる。このように最小探知距離の大部分は、パルス幅の時間に電波が空中で占める長さの半分の距離で決まる。
2] PPI用ブラウン管の最小輝点
PPI用ブラウン管の最小輝点は無限に小さくすることは不可能で、一定の大きさを持っているから、画面半径を何海里の表示範囲(レンジという。)とするかによって、その輝点が占める距離が決まる。表2・2は、ブラウン管の直径が7吋及び12吋についての輝点の大きさと種々のレンジに対する輝点が占める距離を示す表である。