日本財団 図書館


(2)直流負荷直線

図5・2において、ICはRLとトランジスタのコレクタとエミッタ間及びエミッタ抵抗REの中を流れる。したがって、コレクタ・エミッタ間に加わる電圧VCEは、VCCからRLとREによる電圧降下分を引いた電圧となり

 

VCE=VCC-(RL+RE)IC   (5・1)

で表される。

図5・4はエミッタ接地のVCE-IC静特性曲線で図4・23(I)と同様のものである。いま、トランジスタの内部抵抗(コレクタとエミッタ間の抵抗)が無限大となり、ICが0になったとすると、(RE+RL)中の電圧降下はOなのでVCEはVCCに等しくなる。すなわち、VCEは図5・4のB点であり、IBが0の場合に相当する。逆に内部抵抗が0になった場合は、コレクタとエミッタは同電位、すなわち、VCEは0となるからICは(3・1)式より

 

IC=VCC/(RL+RE)   (5・2)

となる。これが図中のA点である。(5・1)式の関係は図5・2の回路において、IBを0から増してゆくときに変化するICとVCEの関係を示したもので、A点とB点を結んだ直線で表される。この直線を直流負荷直線という。

083-1.gif

 

(3)交流負荷直線

交流の入力信号に対しては、リアクタンス分が0とみなされるほど小さくなるように、CCとエミッタのバイパスコンデンサCEの容量を十分に大きくとる。したがって、次段の入力抵抗RiがRLに並列に加わったことにな

 

 

 

前ページ   目次へ   次ページ

 






日本財団図書館は、日本財団が運営しています。

  • 日本財団 THE NIPPON FOUNDATION