日本財団 図書館

共通ヘッダを読みとばす


Top > 産業 > 運輸.交通 > 成果物情報

Conference Proceedings Vol. I, II, III

 事業名 海事シミュレーションと船舶操縦に関する国際会議の開催
 団体名 日本船舶海洋工学会 注目度注目度5


APPENDIX
 Consider the movement of two vessels, own ship and an external target i, traveling on a plan sea surface in an Earth-fixed Cartesian co-ordinate system x-y. It is assumed that the vessels are mass points without extension and that the velocity vectors can be regarded as constant relative to the Earth-fixed co-ordinate. The movement vectors are furthermore considered as known at any time. The two vessel's encounter geometry is plotted in Fig. 3.
 
 Let Xo(L) = [Xo Yo]T and XTi(L) =[XTi YTi]T be the respective position vectors of the vessels, Vo(LT-1) = [Vox Voy]T and VTi(LT-1) = [VTxi YTyi]T represent the corresponding true velocity vectors, and let ψO and ψT represent the respective ture courses. Furthermore, t (T) is time, Δt (T) is equivalent with the vector length in time scale, and α is the aspect angle (relative bearing). The relative vector VRi(LT-1) is then, on component form, given by
 
<ViRx,ViRy> = <ViTx,ViTy> - <VOx,VOy> (3)
 
 The time to, and minimum distance at, closest point of approach, referred to as TCPA (T) and DCPA (L), respectively, follows from minimizing the time derivative of the relative distance function,
 
 
and can be written as
 
 
and
 
 
 The cone-shaped collision danger region (Fig. 4) in true motion display is determined by the position vectors Xki(L) = {[Xki Yki]T}k = {A,B,C,D} which can be formulated as,
 
XiA = XiT + ViTΔtIΨi (7)
and
 
XiB = XO + ViTΔtIΨi (8)
 
where Ψi = [sinΨTicosΨTi]T for O ≤ ΨTi ≤ 2π and I is the 2x2 unit matrix,
 
 
and
 
 
where
Ωi =[(-1)mcos(γi + (-1)nβi(-1)ρsin(γi + (-1)nβi)]T
 
Φi =[(-1)mcos(γi + (-1)qβi(-1)ρsin(γi + (-1)qβi)]T
 
 
m, n, ρ and q are integers (0 or 1 ) according to;
YAi ≥ YBi and XAi ≥ XBi : [m, n, p, q] = [0, 1, 0, 0]
YAi ≥ YBi and XAi < XBi : [m, n, p, q] = [1, 1, 0, 0]
YAi < YBi and XAi ≥ XBi : [m, n, p, q] = [0, 0, 1, 1]
YAi < YBi and XAi < XBi : [m, n, p, q] = [1, 0, 1, 1]
 
AUTHOR'S BIOGRAPHY
 Egil Pedersen received a doctorate in Nautical Science from the Department of Marine Technology at the Norwegian University of Science and Technology (NTNU) in 1997. He is a fully trained merchant ship navigational officer. Dr. Pedersen is currently a visiting researcher to National Maritime Research Institute (NMRI) in Tokyo.
 
 Junji Fukutois Head of Navigation System Group at NMRI. He got a doctorate from Department of Naval Architecture, Ocean Engineering and Engineering Systems, Graduate school of Hiroshima University in 2001. Dr. Fukuto has been engaged in research on development of full-automated ship, safety assessment of HSC navigation and development of navigation support system. He is currently working with developing an automatic collision and grounding avoidance system.
 
 Masayoshi Numano gained a Master of Engineering degree at the graduate school of Kyoto University. He has been engaged in research on energy saving, prevention of pollution, automation and human interface at NMRI since 1978.
 
 Hiroko Itoh holds a position as researcher at NMRI. She majored in Engineering at the University of Tokyo where she received her Ph.D in 2001. Dr. Itoh has been involved in sea traffic simulation development, ship maneuverability assessment and human factors analysis.







サイトに関するご意見・ご質問・お問合せ   サイトマップ   個人情報保護

日本財団会長笹川陽平ブログはこちら



ランキング
注目度とは?
成果物アクセスランキング
123位
(31,861成果物中)

成果物アクセス数
106,028

集計期間:成果物公開〜現在
更新日: 2020年4月4日

関連する他の成果物

1.MARSIM'03 開催報告
2.本会議及びワークショップ開催状況写真
3.九州における離島住民からみた交通バリアフリー化に関する調査研究?鹿児島県をモデルケースとして? 報告書
  [ 同じカテゴリの成果物 ]


アンケートにご協力
御願いします

この成果物は
お役に立ちましたか?


とても役に立った
まあまあ
普通
いまいち
全く役に立たなかった


この成果物をどのような
目的でご覧になりましたか?


レポート等の作成の
参考資料として
研究の一助として
関係者として参照した
興味があったので
間違って辿り着いただけ


ご意見・ご感想

ここで入力されたご質問・資料請求には、ご回答できません。






その他・お問い合わせ
ご質問は こちら から