日本財団 図書館

共通ヘッダを読みとばす


Top > 技術 > 海洋工学.船舶工学.兵器 > 成果物情報

Recent Advances in Marine Science and Technology, 2002

 事業名 海洋科学技術に関する太平洋会議の開催
 団体名 国際海洋科学技術協会 注目度注目度5


PREDICTION METHODS FOR A HYDROELASTIC BEHAVIOR OF AN AIRCUSHION SUPPORTED ELASTIC FLOATING STRUCTURE
 
Tomoki Ikoma1, Koichi Masuda1, Hisaaki Maeda1 and Chang-Kyu Rheem2
 
1Department of Oceanic Architecture and Engineering, College of Science and Technology
Nihon University
Funabashi, Chiba, JAPAN
ikoma@ocean.cst,nihon-u.ac.jp
 
2lnstitute of Industrial Science, University of Tokyo
Meguro-ku, Tokyo, JAPAN
 
ABSTRACT
 
This paper shows the two prediction methods for the analysis of hydrodynamic forces on an aircushion-supported elastic floating structure. One is an approximate method in which the zero draft is assumed and the pressure distribution method is applied, therefore, the problem becomes two-dimensional horizontally. Another applies the three-dimensional source distribution method. There are some areas of free water surface in the aircushions. A behavior of the free surface in the aircushion is directly considered in the analysis of the water pressures or the velocity potentials. In the results the validity of the zero draft assumption is proved. Additionally, a characteristic of the elastic deformation is discussed in head sea conditions. It is found that the elastic deformation is little and the heave motion mode becomes very small when a whole bottom of the floating structure is the aircushion. However, when structural surfaces at the bottom are wide, i.e. not air-supported areas are large, there are some cases that the deformation increases because of the resonance phenomenon. We will investigate the water wave behavior around the floating structure, and from the wave behaviors we will examine the wave drifting forces.
 
INTRODUCTION
 
There are some methods for the hydroelastic response reduction on pontoon-type flexible floating structures. One method is the added mass increases due to installation of submerged horizontal plates at part of edge of the structure. Another is a method such as phase of an elastic wave of the flexible structure being shifted to devise a shape of an area of end of the structure. However, the wave drifting force may increase due to reducing the elastic deflection while the above methods can reduce the elastic deflection. Increase of the wave drifting force is possibly a problem for a design of a mooring system.
 
As a countermeasure, the authors have proposed a very large floating structure with wave energy absorption devices applying the oscillating water column. Its concept was that the device absorbing the wave energy prevented an increase of a reflection wave due to the reduction of the deflection. However, it was very difficult to optimize the device. In addition, the wave drifting force was not always reduced efficiently because the transmitted wave did not change although the reflected wave decreased. Originally, it was the best method for a reduction of the wave drifting force that the reflection wave makes to decrease and the transmitted wave makes to increase but a pontoon-type flexible structure cannot satisfy the above things simultaneously. However, if only water waves can be transmitted no matter if the structure doesn't deform elastically, the transmitted wave will not decrease. Therefore, it may be possible to reduce the wave drifting force. A type that the above problem may be settled is an aircushion supported floating structure.
 
The analysis method of hydrodynamic forces and characteristics of a rigid motion of an aircushion supported floating structure were investigated by Pinkster et al. (1998, 2001) and Lee et al. (2000). These investigations were carried out with a three-dimensional problem for the analysis of hydrodynamic forces, however only rigid motion modes were considered in the investigations. Therefore, characteristics of hydroelastic responses of a very large flexible floating structure supported by aircushions have not been concretely discussed.
 
The present paper shows qualitative characteristics of a hydroelastic deflection of aircushion supporting very large floating structures, and an effectiveness of such floating type is verified. The analysis method and formulations are shown. The pressure distribution method, by Maeda et al. (1996, 2001), is applied. The zero draft is assumed in this method. The pressure change in an aircushion is linearized and a boundary condition of a free surface in an aircushion is directly considered in the analysis of pressures (Ikoma et al., 2002). In this paper, basic characteristics of the elastic deflections of the large aircushion supported elastic floating structures are examined. We examine the hydroelastic behavior of the structures in not only head sea conditions but also oblique sea conditions. We confirm the effectiveness and discuss the behavior of the waves around the floating structure.
 
THEORY
 
Equation of pressure in aircushion
 
Originally, the boundary condition of the general free surface is given as the equilibrium of the pressure between the pressure of the free surface and the atmosphere. In case of the boundary condition on the free surface in the aircushion, the pressure on the free surface is balanced with the compression pressure in the aircushion so far. If the adiabatic compression is assumed to the pressure change in the aircushion, the equation of the pressure can be expressed such as:
 
(Enlarge: 3KB)
 
where, P00 stands for the atmospheric pressure, Pm stands for the additional hydrostatic pressure due to sinking by its weight, V0 is the initial volume of the aircushion; γis the specific heat ratio (1.4 is used in this study) and stands for the volume varying value of the aircushion. After here, the initial pressure in the aircushion P0 is expressed as follows:
 
 
The pressure in the aircushion varies non-linearly according to the volume change. Since the hydrodynamic force is analyzed by using the linear theory. it is necessary that the relation between the pressure and the volume change be linearized. If the relation between the volume change and the initial volume of the aircushion could be expressed as follows:
 
The following approximation was possible:
 
 
Therefore, equation (1) can be rewritten as follows:
 
 
The volume of the aircushion changes according as the water level varies and a ceiling of the aircushion deforms elastically.
 
Three-dimensional prediction method
 
The three-dimensional singular point distribution method (3D-SDM) (Maeda et al., 2001) is applied to the analysis of the velocity potentials. In this study, this method is applied to the analysis of a VLFS with the aircushion with the definitions of boundaries shown in Figure 1 using the right hand Cartesian coordinate. The vertical axis z is the positive upward. A region of water mass under the aircushion and surrounded by a skirt is defined as an inner region ΩA. Outside region of the water mass is defined as the outer region Ω. The area between the inner region and the outer region is continued by a matching boundary. The former includes a free surface in the air chamber. The matching boundary at the bottom outlet satisfies the continuity condition of the velocity potential and the velocity flow. The multi domain method is applied to the 3D-SDM. The free surface in the aircushion satisfies the equation (5).
 
Figure 1. Definitions of boundaries
 
The Laplace's equation is satisfied in the fluid region:
2φ=0 (6)
Each boundary condition is listed as follows;
 
 
(Enlarge: 24KB)
 
Where, subscripts z and R represent the differential due to z or R. And, K is ω2/g , k is a wave number, is a normal vector and stands for a mode shape function of the γ-th motion mode. Subscripts D and I mean the component of the diffraction or incident wave. P0 is an initial pressure in the air chamber, V0 is an initial volume of the air chamber,ρis fluid density, g is the acceleration of gravity,ωis angular frequency, Δz represents vertical displacement of the water surface in the air chamber and i means a complex number. γstands for the specific heat ratio, and γis 1.4 in this study.αrepresents the complex coefficient, which expresses the phase of the pressure corresponding to the volume change in the air chamber. Therefore, amplitude of α is defined from 0.0 to 1.0. It is possible that this is expressed as the impedance of the orifice. In addition, subscripts O and A in equations (12) to (16) stand for the outer region and the inner region respectively. In the diffraction problem, there is no component of the velocity potential of the incoming wave.
 
The source density can be obtained solving the integral equation based on the above boundary conditions, and the velocity potentials are obtained later. The integral equation in the air chamber is expressed as:
 
For Diffraction problem:
 
(Enlarge: 5KB)
 
For Radiation problem of r-th motion modes:
 
(Enlarge: 6KB)
 
Where σ represents the source density, and the Green function in the infinite fluid G0 is 1/r(P,Q), which is a fundamental solution of three-dimensional Laplace's equation.







サイトに関するご意見・ご質問・お問合せ   サイトマップ   個人情報保護

日本財団会長笹川陽平ブログはこちら

日本財団図書館は、日本財団が運営しています。

  • 日本財団 THE NIPPON FOUNDATION



ランキング
注目度とは?
成果物アクセスランキング
506位
(35,327成果物中)

成果物アクセス数
23,090

集計期間:成果物公開〜現在
更新日: 2022年11月26日

関連する他の成果物

1.PACON2002 Abstracts
2.PACON2002 Program
3.PACON2002 Forum
4.エンジンの定期メンテナンス記録
  [ 同じカテゴリの成果物 ]


アンケートにご協力
御願いします

この成果物は
お役に立ちましたか?


とても役に立った
まあまあ
普通
いまいち
全く役に立たなかった


この成果物をどのような
目的でご覧になりましたか?


レポート等の作成の
参考資料として
研究の一助として
関係者として参照した
興味があったので
間違って辿り着いただけ


ご意見・ご感想

ここで入力されたご質問・資料請求には、ご回答できません。






その他・お問い合わせ
ご質問は こちら から