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ABSTRACT 
     Flow injection is being used in steam turbines for some 
combined or geothermal plants in order to increase its total thermal 
efficiency. It can be easily imagined, however, that such flow 
injection is accompanied by additional aerodynamic loss due to the 
flow mixing or the change in local flow angle. The present study is 
devoted to finding the optimum flow injection angle and blade lean 
angle for minimum energy loss and minimum outlet yaw angle 
deviation. A multi-objective non-dominated sorting genetic 
algorithm coupled with a commercial CFD code is developed. The 
system is run in a fully automated fashion requiring no user 
interaction during the whole optimization process. The results 
revealed that low flow injection angles to the suction side of the 
nozzle combined with high positive lean angle are more suitable for 
minimizing the energy loss. Lower yaw angle values were obtained 
for no lean or small lean angle configurations, regardless of the 
flow injection angle. 
 
NOMENCLATURE 
     Abbreviations 
PS  pressure side 
SS  suction side 
SUS  stochastic universal sampling 

Symbols 
c [m] chord 
Lε [m] eddy length dissipation scale 
P  pressure 
Re  Reynolds number = u1 cx / ν 
Tu  turbulence intensity 
α  yaw angle 
β 0 flow injection angle 
∆α 0 flow angle deviation 
γ 0 blade lean angle 
ν [m2/s] kinematic viscosity 
σshare  sharing parameter 
ξ  energy loss coefficient 

Subscripts 

1, 2  inlet, outlet 
0  stagnation condition 
x  axial 
s  slot (injection) 

Superscripts 
−  area average 

INTRODUCTION 
     Secondary flow injection into a flow field can be found in many 
mechanical engineering applications, ranging from micro air 
injection in axial compressors (Nie et al., 2002) to steam injection 
in high efficiency combined cycle steam turbines. In some kinds of 
steam turbines for combined cycle or geothermal power plants, 
injection flows (from 5 to 15% of main mass flow rate) from steam 
generators are introduced between turbine stages, resulting in a 
substantial improvement of the thermodynamic efficiency. As a 
counterpart of the gain due to the injection of steam, the loss due to 
the mixing of the secondary and the main streams may incur in 
additional pressure loss. The upstream steam injected from the 
outer casing is usually at a different temperature and velocity than 
the main flow. Since the injected steam and the main flow are not 
completely mixed in the vicinity of the stator leading edge, 
pitchwise and spanwise variations of the mass flow and the 
unsteadiness of the inlet flow angle occur (Fig. 1). Such variation 
will change the turbine stage operating conditions, affecting the 
blading flow pattern and efficiency. In the present paper, such 
disturbances upstream the nozzle vanes are denominated “inlet 
distortion”. The study of the effects of the flow distortion, which is 
caused by the flow injection or due to upstream flow disturbances 
has been investigated by many researchers (Moser, 1989, Hirai et 
al., 1987). 
 

 
 

Figure 1 - Flow injection schematic diagram. 
 
     In some turbine stage configurations the flow is tangentially 
injected upstream of the stator. In such case, the injection flow may 
be directed to the suction side of the stator at some circumferential 
positions and to the pressure side of the blade for other locations. 
This circumferential variation of the injection angle may cause a 
significant impact on the flow field, i.e., the variation in the outlet 
flow angle and increase in loss. In order to quantify these effects, 
Funazaki et al. (2003a), performed numerical calculations in a 
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turbine stage and compared it with the experimental data (Kamata 
et al. 2002) measured in the single stage turbine rig. Figure 2 shows 
the circumferential variation of the velocity vectors at the vicinity 
of the injection slot. It was observed that the loss due to the flow 
injection could be reduced if the flow angle is orientated to the 
suction side of the stator, following the direction of the passage 
vortex. 
 
 
 
 

 
 

Figure 2 - Velocity vector distribution in the vicinity of the flow 
injection slot (Funazaki et al., 2003). 

 
     Apart from controlling the injection angle, the optimization of 
the blade geometry was also found to be effective in reducing the 
loss. Funazaki et al. (2002a) analyzed the effect of injection flow 
rate on leaned nozzle vanes. It was found that the blade which was 
leaned to the positive (pressure) side provided a reduction in the 
overall energy loss but increased the outlet flow angle deviation. 
     The combined effects of both optimum flow injection angle and 
blade lean angle, however, have not yet been documented. Based on 
the previous studies the authors propose a multi-objective 
optimization adopting as design variables the blade lean and flow 
injection angle and as target functions minimum energy loss and 
minimum flow angle deviation. 

The use of GA for multi-parameter optimization has become a 
popular technique in a wide range of engineering fields, such as 
building thermal design (Wright et al., 2002), aerodynamic design 
of airfoils (Vicini and Quagliarella, 1997) and gas turbine related 
applications (Trig et al., 1999, Akmandor et al., 2002, Funazaki and 
Favaretto, 2003b). The reason for adopting such technique is found 
by the fact that it is robust, simple to implement and provides a 
multi-directional search. Conventional optimization methods such 
as “hill climbing” algorithms search in one direction of the domain 
only and are strongly limited to well behaved target functions. The 
GA, on the other hand, can handle complex non-linear target 
functions and searches for the optimum point in many directions, 
avoiding premature convergence at local peaks, which may not 
represent the global maximum of the search domain. 

The simplicity in translating the GA method into a computational 
code is also one of its great advantages. A GA code consists of basic 
mathematical operations which can be parallelized in a very 
straightforward manner. Another motivation for the increasing 
number of researchers on the GA field may be the fact that it can be 
directly applied to multi-objective problems. This class of problems 
is often found in many kinds of applications where the objectives 
are conflicting with each other, such as minimizing the deflection of 
a cantilever beam while minimizing its weight. 

Among many authors, Goldberg (1989) described the basics 
about GA, including sample program lists. For more detailed 

information on multi-objective GA, interested readers are 
encouraged to refer to the book written by Deb et al. (2002). 
 
OPTIMIZATION PROBLEM DESCRIPTION 
     The model for the current study consists of a turbine nozzle vane 
with an injection slot located at approximately 25% of the axial 
chord upstream of the leading edge (Fig.3). 
 

 
 
 
 

 

 
 
 
 
 

 
Figure 3 - Flow injection and blade lean definition. 

 
     The design variables for the optimization task are the blade lean 
angle (00 < γ < 200) and the flow injection angle (600 < β < 1200). 
The limits for γ were established in order to avoid excessive outlet 
flow angle deviation and the β was constrained to the calculated 
range shown in Fig.2. The negatively leaned blade case was 
discarded from the analysis since it is not as efficient as the 
positively leaned one for reducing the loss (Funazaki et al., 2002a). 
The objectives of the present optimization task are to minimize the 
energy loss coefficient ξ defined by Eq.1 and minimize the flow 
angle deviation ∆α  given by Eq.3. 
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∆α2(γ,β) = α2(γ,β) − α2(γ=0,β=0)                    (3) 

 
where: ξ  is the area averaged energy loss coefficient, 

01P′  the 
weighted averaged inlet total pressure, 

02P  the area averaged outlet 
total pressure, 

2P  the area averaged outlet static pressure, 
01P  the 

area averaged inlet total pressure, 
s0P  the area averaged total 

pressure at the slot, 
1m&  the area averaged inlet mass flow, 

sm&  the 

area averaged mass flow at the slot, κ the specific heat ratio, ∆α2 
the outlet flow angle deviation, α2 the yaw angle, γ the blade lean 
angle and β the flow injection angle. 
     The geometry of the unleaned blade (γ=0) with no injection 
(datum) was initially generated based on the original design data. 
Total pressure measurements on a traversing plane located 17% of 
cx downstream of the same nozzle were performed by Kamata et al. 
(2002). The results in Fig.4 show the agreement between the CFD 
and experiments for almost whole spanwise direction. However, 
from 92% span to the casing wall the CFD results produced higher 
total pressure ratio values. The authors believe that the reason for 
such trend stems from some modeling simplifications employed in 
the numerical simulation. The actual geometry where the 
experiments were taken consists of a single turbine stage. Thus, the 
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results from Kamata et al. (2002) are taking into account additional 
effects, which may have produced the difference observed near the 
casing. In the actual case, the runner is rotating close to the 
traversing plane and there is also an interaction between the rotor 
shroud and casing recess. In the numerical simulation, however, the 
rotor is not modeled neither the casing recess.  Instead, no-slip 
condition is applied at the casing and wall function is used. Some 
wiggles in the experimental data, possibly caused by non-uniform 
inlet condition upstream of the nozzle, were found from 10% to 
70% span. These effects are not believed to have affected the 
overall energy loss evaluation since the area averaged results 
showed a difference lower than 0.1%. 
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Figure 4 - Total pressure ratio downstream of the nozzle (no 

blade lean, no flow injection). 
      
OPTIMIZATION TOOL 
Genetic Algorithms 
     The GA is a powerful optimization tool based on the theory of 
evolution, which means that the “best fit” individuals in one 
generation survive. The “fitness” in GA is the function to be 
optimized (target function) and the parameter set or problem 
variables are denominated a “chromosome”. In the present study, 
the real value of each design parameter is encoded as a string of 
binary digits. For instance, string 10111 refers to γ = 14.830 and 
string 00100 to β = 112.250. The strings for each one of the 
parameters are blended into a large string, forming the chromosome 
1011100100. The GA works with a number of chromosomes for 
each iteration or generation, providing a search in multiple 
directions of the domain simultaneously. Preliminary tests with the 
GA code here described showed that a constant population size of 
40 chromosomes was suitable for the optimization task. 
     The starting point for an optimization using GA is a process 
called initialization. The initial population of chromosomes can be 
generated automatically by invoking a pseudo-random number 
subroutine, usually available in computer language compilers. The 
GA converges to the same result independent of the starting 
population. According to Trigg et al. (1999), a given start with 
specified values for the chromosomes does not seem to be an 
important feature since initial convergence is rapid. 
     After the initial population has been created, the GA needs to 
evaluate the fitness for each one of the chromosomes belonging to 
the initial generation. This means judging how well each 
chromosome is performing according to their phenotype (design 
parameters). The tool used to evaluate the fitness is independent on 
the GA code and can be externally called by the program. This is a 
remarkable feature which allows GA to be applied in almost any 
research field. For the present optimization task, the commercial 
CFD code CFX-5.5.1 (Ansys Inc.) was used for calculating the 
energy loss and yaw flow angle deviation downstream of the nozzle 
vane. 
     With the fitness values for the chromosomes of the initial 
generation calculated, the GA code must select the candidates for 
mating. In other words, the individuals will be rated according to 
their fitness and the ones with the highest fitness are likely to be 
elected for reproduction. This part is the most important one in a 
GA code since it will directly influence the search direction. In the 

case of single objective GA the criteria for selecting the best fit 
individual is based simply on the result obtained from the CFD 
analysis. For multi-objective GA, however, there will be a family of 
optimum solutions for each generation. Therefore, it is not possible 
to simply base the selection criteria on the “raw” fitness values. A 
fitness scaling is necessary. The procedure adopted in the present 
code is based on the non-dominated sorting technique. First, all 40 
chromosomes in the population are evaluated according to their 
rank. The definition of rank states that an individual with rank one 
is the one who is not dominated by anyone else, i.e., no other 
chromosome is better than him in every objective. For instance, a 
chromosome that provides the lowest flow angle deviation and the 
highest loss is not better nor worse than a chromosome that 
produces the lowest loss and the highest flow angle deviation. Both 
chromosomes are considered to produce an optimum solution, 
therefore, they are non-dominated and belong to the optimal front 
or Pareto optimal front. All chromosomes with rank higher than 
one are dominated. The rank therefore indicates the number of 
solutions that dominate (are better in all aspects) each one of the 
chromosomes. The higher the rank, the farther the distance from the 
Pareto optimal front. The fitness is recalculated by Eq.4 so that 
chromosomes in the same rank will have the same fitness. 
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where Fi is the rank based fitness, N the population size, σshare the 
sharing parameter and µ(ri) the number of solutions in rank ri. In the 
present paper σshare was assumed as constant through all 
generations and equal to 0.158. This value was chosen based on 
preliminary GA calculations for a two-objective problem validated 
with the analytical solution. Figure 5 presents an example of fitness 
recalculation based on the rank and the sharing parameter (in this 
case σshare = 0.5) for a minimization problem of both objectives. 
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Figure 5 - Ranking of solutions for a minimization problem. 

 
     After assigning the rank-based fitness, a niching operator 
(Fonseca and Fleming, 1993) among solutions of each rank is 
invoked. This technique is implemented in order to provide a 
suitable distribution of the optimal solutions along the front, 
avoiding sections of the curve clustered with points while others 
poorly represented. In terms of GA, it means that chromosomes in 
crowded regions (clustered points) should share more among 
themselves than chromosomes that are far from each other. From 
such definition stems the concept of sharing function, which is 
calculated based on the inter-chromosomal distance and σshare. The 
niche count is then evaluated based on the sharing function for each 
one of the chromosomes. The rank-based fitness is scaled by the 
niche count. 
     Based on the scaled fitness the selection process is performed in 
the same manner as for single objective GA. Several methods for 
accomplishing this task are described in the literature. The most 

Pareto-optimal 
front 

5.0

5.0

5.0

2.5 

2.5

1.0



 

-4- 

common one is called roulette wheel, in which all chromosomes of 
a population share a certain sector of a wheel, proportional to their 
fitness. The wheel is then spun and the chromosome selected. This 
method, however, causes premature convergence of the results 
because the best fit chromosome tends to dominate the others and 
cause their early extinction. The GA will follow one direction, 
leaving other possible maximum locations behind. Considering 
these limitations, the stochastic universal sampling (SUS) selection 
method was chosen instead. This method is quite similar to the 
previous one except that, in addition to the proportionally divided 
wheel, a uniform spaced scale is also defined around the wheel. The 
number of divisions of this scale equals the population size. Thus, 
only one spin is necessary for selecting all 40 chromosomes for 
mating. This method not only provides high probability of selecting 
the best fit chromosome but also offers a higher chance for 
chromosomes with poor performance to be selected, maintaining 
the diversity of the population. The set of chromosomes selected for 
reproduction is defined as mating pool. 
     After selecting the eligible chromosomes for reproduction, the 
recombination process is performed. The chromosomes mate 
(parents), generating two new chromosomes (children) in order to 
keep the population size constant. The genes or the string bits are 
exchanged between the children at a probability of 0.9. This value 
was increased from the one adopted for the single objective GA 
code previously developed by the authors. In this way, the mutation 
operator, which is necessary for diversity of the population, could 
be eliminated. Like the selection process, there are many ways to 
perform recombination. The one-point crossover was chosen for 
the present paper. In this recombination method a bit location is 
randomly chosen. The information from the bit location just after 
the selected bit to the end of the string is exchanged between child1 
and child2. For instance, suppose the selected bit location is 7, 
child1 = 1001000111 and child2 = 1010111100. After crossover, 
child1 would become 1001000100 and child2 1010111111. 
     After the four main operations (selection, recombination, elitism 
and mutation) have been completed the children replace the current 
population of chromosomes. The process is repeated until the 
convergence criteria has been satisfied. Table 1 shows a summary 
of all GA parameters adopted in the present paper. 
 

Table 1 - Genetic algorithm parameters. 
 

Chromosome length 10 
Type of coding binary 
Population size 40 (constant) 
Selection method SUS 
Recombination method one-point crossover
Crossover probability 0.9 
Number of objectives 2 
σshare 0.158 (fixed) 

 
Optimizer Implementation 
     The GA code here described was developed in a hybrid 
FORTRAN/Perl/UNIX shell script language. This technique was 
used so that the CFX-5.5.1 code could be combined with the 
optimizer. Figure 5 presents a flowchart describing the mechanism 
of the code. 
     One of the critical problems when using a GA code is the CPU 
time. The fitness has to be evaluated for all chromosomes 
belonging to every generation. Thus, for a population of 30 
chromosomes, after 30 generations, the flow solver would have 
been called 900 times. If each one of the solver executions are 
performed sequentially, the CPU time would be 900 multiplied by 
the time required for each run. In order to provide faster results 
fully automated parallel processing and database subroutines were 
implemented in the code. In the beginning of each generation, the 
code reads the database and discards all chromosomes that have 
already been solved. The grid system is then generated sequentially 

for the remaining chromosomes and the solution loop starts. The 
code submits to the queue the jobs to be solved until the number of 
available CFX-5.5.1 solver licenses has been reached. The pending 
jobs wait until another license is granted. The loop ends when all 
jobs have been submitted to the queue. After that, the 
post-processing tool is run in batch and the two objectives ξ and ∆α 
are evaluated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 - Genetic algorithm optimizer flowchart. 

DECODE 
Convert the string of binary bits to 
real values of the design parameters

STATISTICS 
Write the output for the current generation 

GENERATION 
 
 
 
 
 
 
 
 
 
 
 

1) SELECTION (SUS) 
Divide a wheel in slices proportional to the fitness
of the individuals. Create a uniform spaced scale
around the wheel, the number of divisions being
the population size. Spin the wheel once. 

2) RECOMBINATION (One-point crossover) 
Randomly choose the crossover site 
Flip a biased coin (pheads=0.9) 
If heads → crossover

FITNESS 
DO I = 1, Population size 
   Read database → IF solution exists skip, ELSE continue
   Create grid system using CFX-TurboGrid 
   Export grid to CFX-5 and regions for results evaluation
   Import grid and create boundary conditions CFX-5 file
ENDDO 
DO I = 1, Unsolved Population size 
   Check number of CFX-5 solver licenses available 
   IF no licenses are available wait until granted 
   ELSE submit the job to the queue 
ENDDO 
After finishing the loop, check if solving process has been
completed. If so, proceed to the evaluation of ξ and ∆α. If
not, wait. 

DO WHILE I < maxgen

PARETO 
1) Find the rank of each individual 
2) Calculate a rank-based fitness based on rank and σshare
3) Evaluate the distance metric d 
4) Calculate the sharing function based on σshare and d 
5) Evaluate the niche 
6) Calculate the shared fitness 
7) Calculate the scaling factor for each rank 
8) Calculate a scaled fitness by multiplying “6” times “7”

INITIALIZATION 
The initial generation is created randomly
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NUMERICAL SIMULATION 
Grid System 
     A UNIX shell script code was developed by the authors in order 
to automate the computational grid generation. For each selected 
chromosome  (which have not been solved before), the code reads 
the decoded real values for the design parameters, generates a 
geometry file and executes the CFX-TurboGrid (Ansys Inc.) in 
batch mode. A CFX-5.5.1 session file is then played in order to 
import the grid system, apply the boundary conditions, define 
solver parameters and export all data to a binary file that will later 
be used as input for the flow solver. Figure 7 shows a mesh for 
γ=20.00. 
 

 
 

Figure 7 - Grid system. 
 
     The grid system shown in Fig.7 has the same pitchwise and 
streamwise node distribution as in the previous complex stage 
analyses performed by the authors (Funazaki et al., 2002a, 2002b, 
2003a). The spanwise distribution, however, was reduced from 50 
points to 26 in order to minimize the CPU time. The total number of 
grid points was 270,270. 
 
Computational Code 
     The three-dimensional, incompressible, Reynolds-averaged, 
steady Navier-Stokes equations were solved with the finite volume 
CFX-5.5.1 computational code. Considering the velocity-pressure 
coupling, the code uses a single cell, non-staggered, collocated grid 
to overcome the decoupling of pressure and/or velocity. In the 
equation of continuity, a second-order central difference is used to 
approximate the first-order derivative in velocity, modified by a 
forth-order derivative in pressure, which acts to redistribute the 
influence of the pressure. This overcomes the problem of 
checkerboard oscillations that are found when the variables are 
collocated (CFX-5 User’s Manual). The method is similar to that 
used by Rhie and Chow (1982). A second order accurate scheme 
was selected for the discretization of the advection term. This 
scheme adds an extra term to the conventional upwind differencing 
scheme, known as numerical advection correction. The parameters 
for the extra term are calculated based on the report of Barth and 
Jespersen (1989). The flow solver uses the algebraic multigrid 
method (Raw, 1996) with additive correction (Hutchinson and 
Raithby, 1986), which forms a system of discrete equations for a 
coarse mesh by summing the fine mesh equations. This results in a 
virtual coarsening of the mesh spacing during the course of the 
iterations, and then re-refining the mesh to obtain a more accurate 
solution. 
     An automatic time step calculation based on the boundary 
conditions, initial guess and geometry of the domain is performed 
by the code every 6 iterations. This feature was found to be 
effective in improving the convergence rate. The numerical 
simulations were assumed to be converged when all residuals 
became smaller than 10-4 or after 100 iterations had been completed. 
In most cases convergence was obtained 10 or 20 iterations before 
reaching the iteration limit. 

Boundary Conditions 
     The boundary conditions employed were based on the 
experimental data and on the previous calculations similar to the 
present analysis (Funazaki et al., 2002a). For the inlet region, total 
pressure, inlet turbulence intensity (Tu=3.7%) and the dissipation 
length scale (Lε=0.01) were prescribed. For the outlet region, static 
pressure was prescribed. Since this quantity had not been measured, 
back-calculations were performed for the datum by changing the 
outlet static pressure values until the resulting outlet total pressure 
best matched the experimental data. The same value of the static 
pressure obtained for the datum was specified for the injection 
cases. The blade and casing wall regions were assumed as adiabatic 
and the non-slip condition was applied. For the pitchwise 
boundaries, periodic boundary conditions were applied. The 
working fluid used in the calculations was air at room temperature. 
Concerning the flow injection cases, the velocity was calculated as 
10% of the main stream flow rate and prescribed according to the 
injection angle, maintaining the magnitude of the injection velocity 
vector constant. The Reynolds number based on the stator axial 
chord length and inlet velocity for all cases was 38,000. 
 
Turbulence Model 
     The k-ε model with scalable wall function was chosen for its 
robustness and low computational time requirement. Unlike other 
conventional wall function models, the scalable one avoids 
inconsistencies in the wall function in case of excessively fine grids. 
The principle of this model is to simply neglect all grid points in the 
viscous sublayer, i.e., y+<11. Therefore, consistency for arbitrary 
grid refinements is guaranteed regardless of the Reynolds number 
of the problem. 
 
RESULTS 
Pareto-Optimal Front 
     The GA code solved 90 generations in 12 days using the Origin 
3800 machine at the Supercomputing Center of Iwate University. 
The CPU time for the present GA run was substantially reduced in 
comparison with the previous single objective GA code developed 
by the first two authors (Funazaki and Favaretto, 2003b). The 
reason for such improvement can be attributed to the automated 
parallel processing routine and the implementation of a database, 
which stores all unique design configuration fitness and recalls 
such values when similar case appears in subsequent generations. 
Another aspect for the less time consuming GA is due to a better 
compromise between CPU time for each run (4 to 5 hours) and 
numerical accuracy. 
     Figure 8 shows the population fitness for generations 1 
(diamonds) and 90 (circles). The first generation was bred from a 
random population, thus presenting a scattered distribution in the 
objective space. The last generation completely lies on the 
Pareto-optimal front, with exception of five or six individuals. One 
of the reasons for such behavior could be justified by the selection 
process adopted in the algorithm. Even though the SUS tends to 
favor the best fit individuals there is no guarantee that a 
chromosome with lower performance will be completely excluded 
from the mating pool. This is because there is also some 
randomness in such selection process. In addition to that, the 
selected individuals have their fitness rescaled by the Pareto 
subroutine shown in Fig.5. The shared fitness computation 
procedure does not make sure that a solution in a poorer rank will 
always have a worse scaled fitness than every solution in a better 
rank. There are crowded solutions in some parts of the Pareto front 
which produce lower niche count values. On the other hand, some 
individuals with a lower rank and located far from clustered 
solution regions have a higher niche count. In the present code, the 
parameter which is directed related to the niche count (σshare) was 
set as constant through all generations. This value may not be 
suitable for all generations and may also depend on the shape of the 
Pareto-optimal front (Deb, 2002). Recently, however, some authors 
have suggested a dynamic update of σshare, which would account for 
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changes in the Pareto-optimal front. The validity of such approach 
has not yet been verified by the present authors, remaining as an 
important issue for future improvements of the described code. 
     Figure 8 also shows two Pareto-optimal fronts. The green line 
refers to the converged Pareto front obtained at the generation 90. It 
should be noted that even if all chromosomes belonged to the 
Pareto front the maximum number of points describing the curve 
would be restricted to the population size. In order to obtain a more 
representative curve, all solutions in the database were ranked after 
generation 90. The red curve in Fig.8 shows a more detailed 
Pareto-optimal front with 37 points widely spread. This global front 
shows similar trends as the local one, which could be an indication 
that convergence was indeed achieved at generation 90 and further 
runs would only change the relative location of the chromosomes 
on the local Pareto-optimal front. 
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 Figure 8 - Pareto-optimal fronts and population. 
      
     The numbers shown in Fig.8 indicate chromosomes located in 
key positions of the Pareto front and the respective design and 
fitness values are described in Table 2. The Pareto front can be 
described by a linear curve from chromosome 5 to 4. This part of 
the curve shows the optimum configurations for a low loss model. 
The values indicate that the injection angle should be held constant 
(β=1200) while a linear increase of the lean angle would increase 
the flow angle deviation and decrease the loss. In the region 
between chromosomes 4 and 3 a “plateau” can be found. No 
significant change in loss or flow angle deviation is detected for 
such region. Between chromosomes 3 and 2, however, the results 
show a substantial reduction in the flow angle deviation with 
almost no cost in terms of loss. This “cliff “ topology suggests that 
chromosome 2 is definitely more fit than chromosome 3 and the 
abrupt drop in ∆α is caused mostly by the lean angle. Naturally, the 
unleaned blade will produce a lower flow angle deviation 
regardless of the injection angle. Following this trend, from 
chromosome 2 to 1 the flow angle deviation is hardly affected and 
the loss is practically dependent only on the injection angle. 
 

Table 2 - Selected Optimal Solutions. 
 

Chromosome γ β ξ ∆α 
1 0.00 1020 0.0848 0.950 

2 0.00 1200 0.0816 1.090 

3 10.90 1100 0.0814 2.190 

4 11.60 1200 0.0804 2.470 

5 20.00 1200 0.0765 3.860 

 
     The results from Fig.8 and Table 2 provide a general view of 
several ideal configurations. The step further, which is selecting 
from the family of solutions the one that best suits a particular 
interest, cannot be performed by the GA code. Therefore, after 
obtaining the Pareto-optimal front the turbomachinery designer has 
to make the final judgment. For instance, if the objective of the 
optimization is more intended to minimizing the loss then a 200 
leaned blade with 1200 flow injection angle (chromosome 5) should 

be adopted. If the goal is also to reduce the loss but without 
compromising the flow angle deviation, as it would be in a nozzle 
redesign task for a constrained turbine rotor geometry, the unleaned 
blade with β=1200 would be the best choice. 
 
Physical Interpretation of the Optimum Solutions 
     It must be stated that the conclusions drawn from the GA results 
are limited to the constraints established beforehand. Extrapolating 
the Pareto-optimal front to the direction of interest would not 
necessarily give the desired fitness. It is therefore important to also 
have a thorough comprehension of the flow events occurring in the 
proposed model before attempting to extend the range of 
applicability of the results. 
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 Figure 9 - Energy loss distribution along the axial direction. 
 
     Figure 9 presents the energy loss distribution along the axial 
direction calculated locally by using Eq.1. The injection slot is 
located at –25% cx, the leading edge at 0% cx and the trailing edge at 
100% cx. The numbers in the figure indicate the same chromosome 
numbers used in Fig.8 and Table 2. The energy loss for the datum is 
increased proportionally to the axial direction from leading to 
trailing edge, indicating the natural behavior of a flow through a 
nozzle vane. For such case the energy loss would be the summation 
of inlet boundary layer, profile and endwall losses. A substantial 
increase in loss is observed from approximately 60% axial chord. 
This phenomena can be attributed to the increased dissipation due 
to the suction surface velocity increase, which is related to the blade 
solidity, and the loss core formed in the surface suction endwall 
corner as the passage vortex lifts-off from the suction surface. 
     The curves for the injection cases presented a completely 
different behavior from -25% cx to 79% cx in comparison with the 
datum. These curves include not only the losses previously 
described but extra loss due to the mixing of the injection flow and 
the main stream. In the vicinity of the injection slot the loss 
increases substantially, reaching its maximum at –6.4% cx for all 
analyzed cases. In this part of the domain a huge vortical structure 
is formed, creating a blockage for the upstream flow, which extends 
from the casing wall up to 30% of span fraction depending on the 
injection angle. The choice of a suitable injection angle was found 
to be the most important factor for the loss reduction since it is 
directly related to the size of the vortical region. A smaller 
tangential angle will necessarily reduce the penetration of the 
secondary injection flow and as a consequence reduce the high loss 
region, which is propagated to the blade passage (Funazaki et al., 
2002b, 2003a). By observing the curves for chromosomes 2 and 5 
one may find that blade lean also plays a role in reducing the loss, 
though with a lower intensity. Figure 9 also shows that both curves 
begin diverging from each other at 19% cx upstream of the leading 
edge even though the injection angle is the same for both cases. 
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This suggests that the effects of blade geometry change (lean angle) 
propagate upstream of the leading edge, affecting the pattern of the 
vortical structure. In terms of the energy loss, the positively leaned 
blade produces a similar effect as the injection flow angle but with a 
smaller magnitude. 
     Figure 10 presents streakline plots coloured by fraction of span 
for the datum (a) and chromosome 5 (b) configurations. In Fig.10a 
it can be observed that the small spheres representing the streakline 
path do not present any variation in their color, i.e., there is no 
significant radial force acting on the flow. However, Fig.10b shows 
a noticable change in the spanwise location of the streakline, which 
departs from upstream at 29% span and passes through mid chord at 
34% span. This result shows the existence of a radial inwards blade 
force acting on the flow, causing the streaklines to move contrary to 
the intuitive expectation. Denton and Xu (1999) deduced simple 
equations for qualitative understanding of the streamline shift (the 
difference between the two spanwise locations) and the radial force. 
Their analysis was performed for the no injection case and 
therefore cannot be applied for chromosome 5. In the flow injection 
case, an additional term is added to radial force. Figure 10b shows a 
large recirculation region confined between the injection slot and 
the leading edge. The streaklines emitted from upstream, when 
encountering such region, are forced inward to the direction of the 
blade root. Apparently, flow injection seems to be beneficial in 
reducing the energy loss but this effect is counteracted by another 
loss core formed upstream of the leading edge. The energy loss is 
reduced in the axial direction from –6.4% cx to 79% cx probably due 
to such effect. From 79% cx to downstream the secondary flow has 
been completely mixed with the main stream and the trend of the 
energy loss follows the datum situation. The shift in the curves for 
the injection case in comparison with the datum shows clearly the 
cost in terms of energy loss caused by the size of the vortical 
strutures upstream of the leading edge. 

 
 
 

  
a) Datum b) γ = 200, β = 1200 

 
Figure 10 - Streakline plots for datum and chromosome 5. 
 
     The static pressure contours on the first two columns of Fig.11 
show the effect of blade lean and flow injection on the blade 
loading. Taking into account solely the geometrical effects, 
different lean angles may be considered as moving the blade within 
an almost frozen pressure field. In the case of a positively leaned 
blade the root section is moved into a region of low velocity thus its 
loading is reduced whereas the tip section is moved into a region of 
high velocity and its loading increased (Denton and Xu, 1999). 
These trends were confirmed by the numerical simulations of 
Funazaki et al. (2002) for smaller lean angle. Figure 11b shows the 
contours for the unleaned case with flow injection. This figure 
shows no significant change in the static pressure distribution from 
root to approximately 70% span comparing to the datum case. At 
25% cx the secondary flow is still mixing with the main stream. The 
contours for Fig.11a at this axial plane seem to be scaled in Fig.11b 
from root to 70% span. From 70% span to root Fig.11b shows the 
complex flow field caused by the large vortices. At 75% cx the flow 

is almost completely mixed and the flow pattern resembles the 
datum. However, the loading has been increased, as shown by the 
inclined isobars. The third column of Fig.11b presents the total 
pressure ratio contours, which were calculated by dividing the local 
total pressure by the weighted averaged inlet total pressure (Eq.2). 
As previously shown in the calculations of Funazaki et al. (2002b), 
for β > 900 the injection flow follows the direction of the passage 
vortex. The low energy fluid region formed due to the injection 
mixes with the boundary layer fluid and moves along the span away 
from the casing. The smaller the injection angle (relative to the 
casing) the lower the loss. Cases for β < 900 provide a higher loss 
because the flow injection stream is directed to the pressure 
(concave) side of the blade causing a relative diffusion, hence 
raising the static pressure. 
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 b) γ = 00, β = 1200 
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0.25 cx 0.75 cx 1.17 cx 
Static pressure contours Total pressure ratio

 
Figure 11 - Static pressure and total pressure ratio contours 

through the blade passage seen from upstream. 
 
     As previously shown in Fig.10b, blade lean can also be effective 
in reducing the energy loss for the flow injection cases. The static 
pressure contours show more clearly the increased pressure near the 
root, which is directed related to the radial blade force mechanism. 
The benefits of such trend are reflected on the reduced passage 
vortex near the root end wall, shown by the pressure ratio contours 
in Fig.11c. This effect is caused by the pressure gradient acting 
from the wall, which causes low energy fluid to move along the 
span towards the more highly loaded end wall on the tip. 
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     The combination of γ and β will affect both the radial blade force 
and the size of the vortical structures upstream of the leading edge. 
It seems there is a trade-off between these two phenomena. A large 
recirculation region will increase the loss by extracting energy from 
the fluid coming from upstream. On the other hand, the streamline 
shift might be increased, which will also increase the radial blade 
force. Therefore, the combination of γ and β do not follow a linear 
pattern for all objective space. Regions such as the cliff between 
chromosomes 3 and 2 in the Pareto-optimal front of Fig.8 may 
occur when such non-linearity is encountered. 
     It must be outlined that the current optimization task is also 
aimed at reducing the outlet flow angle deviation ∆α. The results in 
Fig.8 and Table 2 suggest that chromosome 5 produces 10% lower 
loss than chromosome 2 with “only” 2.910 increase in the flow 
angle deviation. This increase in ∆α does not seem to be relevant 
considering the substantial decrease in loss. A correct interpretation, 
however, requires a more detailed analysis of the flow angle 
distribution, i.e., pitchwise distribution. Figure 12 shows that ∆α 
for chromosome 5 is not extremely high in average but the 
deviation from it can be as high as 60 near the root and 80 near the 
tip. If one attempts to extrapolate the results for chromosome 5 for 
reducing the loss the highly leaned blade could lead to extremely 
distorted profile near the end walls. This local change would not 
necessarily be reflected in the magnitude of the area average, thus 
requiring drastic modification of the downstream rotor blading. 
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Figure 12 - Pitchwisely averaged outlet yaw angle. 

 
CONCLUDING REMARKS 
     The present study described the development of a 
multi-objective GA code and its application to the optimization of 
secondary flow injection upstream a turbine nozzle vane. The 
genetic algorithms have proven to be a useful tool for tackling the 
challenging design tasks of modern gas turbines. The development 
of a hybrid FORTRAN/Perl/UNIX shell script program enabled the 
authors to combine the GA code with a commercial software. 
     The results revealed that low flow injection angles to the suction 
side of the nozzle combined with high positive lean angle are more 
suitable for minimizing the energy loss. Lower yaw angle values 
were obtained for no lean or small lean angle configurations, 
regardless of the flow injection angle. 
     The methodology adopted in this study may be applied to many 
other practical engineering problems. However, the authors 
acknowledge the necessity of improvements in the GA code. In 
particular, further investigation on non-dominated sorting and the 
implementation of an elitist model in the selection process. 
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