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ABSTRACT
Many airlines nowadays demand payment for their engine

maintenance costs on an hourly-utilization basis. Thus engine
manufacturers have become more focused on performance-
deterioration modelling and prognostics capability in order to
achieve greater confidence in their cash-flow projections. Hence a
method for predicting the performance deterioration of civil aero-
engines has been devised. The main aims are to achieve
significant benefits in mission scheduling and maintenance
planning, as well as to reduce both fuel consumption and the costs
of maintenance servicing. An example concerning performance-
deterioration prognosis is studied.

INTRODUCTION
Jet engines’ rotating-components degrade during operation and

this affects their performances. (Saravanamuttoo, 1985). So gas-
path diagnostics has aimed at detecting, isolating and assessing
these changes in performances even in the presence of
instrumentation faults. A comprehensive overview of
performance-diagnostics techniques can be found in Li (2002b).
Related to diagnostics, the goal of prognostics is to predict the
engine’s or the component’s health-condition.

Recently attention has been devoted to developing prognostics
algorithms for the analyses of engine performances, within both
the civil and military sectors.

Sheuren (1998) described an artificial-intelligence based
prognostics and health-management process (PHM) for the Joint
Strike Fighter. Thereby the military services aim at eliminating
traditional inspections and calendar-based maintenance: remedial
actions are preferably based solely on existing condition. Jaw (
1999, 2001) and Green et al. (1997) described how the US Air
Force included artificial-intelligence based prognostics algorithms
in the health management software. A knowledge–based expert-
system for prognosis, and its integration with diagnostics results,
according to Pratt and Whitney experience, was presented by De
Pold (1999). Roemer et al. (1999) approach life prediction by
focusing on uncertainty propagation using space-time variant
stochastic process models. Hence, a prognostics algorithm for a
US navy’s ship-propulsion system was discussed by Kacprzynski
et al. (2001b). The importance of data fusion was highlighted by
Kacprzynski et al. (2001a) and the prognostics value for risk
assessment in decision making was described by Roemer et al
(2000). A review of the prognostics approach applications to gas-
turbine health-monitoring can be found in Byington et al. (2002).
Ghiocel (2001) illustrated the application of a hybrid stochastic-

neuro-fuzzy-inference process to fault diagnostics and
prognostics. Brotherton et al. (2000) proposed an integrated
prognosis-process that uses a dynamically-linked ellipsoidal basis
function neural-network. They also presented a review of
artificial-intelligence based methods. A prototype health-
monitoring-and-prognostic process applied for the gas-turbine
engine on the US Army M1 Abrams tank was discussed in
Greitzer et al. (1999).

The present investigation focuses on forecasting algorithms,
based on time-series models, which are applied to solve
prognostics problems in engine-performance analysis: the
probability of performance deterioration and its range of
magnitude during the next time period of interest are calculated.
Two techniques to handle gradual deteriorations in different
prognostics problems are presented here. The Box-Jenkins
ARIMA method has been used to provide accurate forecasts for
immediate and short-term forecasting. Whereas, regression
analysis is designed to handle prognoses that require medium and
long-term predictions, focusing on physical-based mathematical
models of the degradation.

The purpose of quantitative forecasting is to reduce the risk in
decision-making. Forecasts are usually incorrect, but the
magnitude of the prediction errors experienced depends upon the
forecasting method used. The development of forecasting
capability is aimed at improving the prediction accuracy and
thereby eliminating some of the errors resulting from uncertainty
in the decision-making process.

The forecasting methodologies described in this paper will be
part of a health-monitoring-and-prognostics (HMP) process that
can carry out the following functions: engine-performance
analysis and diagnosis; fault identification; prognosis for mission
scheduling; as well as maintenance planning.

An advantage of the HMP process is that introducing time-
series analysis detects rapid deterioration and treats gradual and
rapid deterioration separately, thereby gaining in robustness.

The main goals of the process are to achieve significant benefits
with respect to mission scheduling and maintenance planning, as
well as to reduce the cost of maintenance servicing. To achieve
these targets, the various process functions need to be well
integrated and efficiently updated with new information. If an
airline’s goals of least fuel-consumption and maximum engine-
reliability are to be achieved, then it is essential to be able to
predict accurately the performance of each of its engines.

DIAGNOSIS AND PROGNOSIS
The research described here has been carried out for a civil

three-shaft, high by-pass turbofan. This engine is monitored via 10
measurements (z), the operating condition is defined using 4
quantities (u). The 12 performance parameters (x), efficiencies and
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flow capacities of the 6 gas-path components, namely 3
compressors and 3 turbines, are calculated through the diagnostics
methodologies.

Diagnostics and prognostics algorithms deal with the changes in
the values of the measured parameters, calculated as percentage
deviations with respect to a baseline condition determined by
means of an engine-performance simulation model.

Gradual and rapid deterioration
Fouling, blade erosion and corrosion, worn seals, excessive

blade tip clearance and their synergic effects induce gradual
changes in the thermodynamic performance of the engine and its
components. This results in gradual changes in the set of
measurements. Foreign object damage, system failures and sensor
faults result in rapid changes in the set of measurements.

Therefore gradual and rapid deteriorations can be distinguished
and treated separately. The former implies that all the engine
components are deteriorating slowly, whereas the latter may be the
result of a single event.

The presence of two different fault-mechanisms and the
difficulty in solving simultaneously the two problems with the
same algorithm has led to the necessity of implementing two
complementary diagnostics methodologies.

There are several algorithms available to address the problem of
estimating gradual as well as rapid deteriorations, namely
multiple-fault isolation (MFI) and single-fault isolation (SFI)
methods respectively (Volponi, 2003).

Traditionally a diagnosis has been mostly performed by
inspecting a single-point observation leading to a snap-shot
calculation. However for MFI and SFI methods to operate
simultaneously requires an algorithm for event detection based on
a time-series analysis.

In a similar way as far as gas-path prognostics is concerned, a
distinction between gradual and rapid degradations is considered
necessary. The forecasting algorithms described in this paper
focus on gradual deteriorations. Rapid deteriorations, once
detected and estimated, are taken into account in the prognosis
through hazard plots specific to the engine and the mission’s
route.

Prognostics applications
Prognostic outcomes influence directly scheduling missions and

planning maintenance. By having an accurate prognosis-capability
for a fleet of engines, the maintenance as well as spare-part orders
can be planned.

Prognostic capability is critical for:
- Calculating the risk of failure for a given lead time

horizon (i.e. risk analysis, performance rejection)
- Optimal management of the fleet (cost balanced

against safety)
- Identifying the optimum for the maintenance costs to

benefit ratio (costs)
- Combination between the engine-health monitoring

process and the engine parts life-tracking process
(life usage)

Defining the forecasting problem
Different prognostic problems require different forecasting

approaches. Firstly, because forecasting algorithms, which are
reliable for a short-term predictions, tend to be inaccurate for
long-term horizons and vice versa.

Moreover the nature of the decision to be made will dictate
many of the desired characteristics of the forecasting process such
as which variables should be investigated, what time elements are
involved, what form the forecast should take, what accuracy is
desired and what is the availability of the data.

The variables investigated are component performance
parameters and measurements. Performance-parameter forecasts
are investigated at cruise condition. This study is aimed at

predicting the components’ degradation levels and their
probability in the next future and at estimating the consequent
shares of change in specific fuel consumption (SFC) due to each
component.

Measurements trends and forecasts are usually studied at take-
off (and climb) to guarantee the turbine gas temperature (TGT)
and shaft-speed margins.

As far as the time elements are concerned, we distinguish the
forecasting period, the horizon, and the interval.

The forecasting period is the basic unit of time for which the
analysis is made. For example we might wish a forecast by
number of missions (i.e. cycles) or by operating hours. The
forecasting horizon or lead time is the number of periods in the
future covered by the forecast. Finally the forecasting interval
dictates the frequency with which new forecasts are performed.
The forecasting interval is often the same as the forecasting
period.

The majority of a civil engine’s running-time is spent under
cruise conditions, which represent operation of the engine at much
lower rotational speeds, pressures and temperatures (than during
take-off or climb) and hence contribute little to deterioration. Thus
deterioration is usually correlated against cycles (forecasting
period); where 1 cycle is a flight consisting of a take-off, a cruise
period, a descent, and a landing. Another cycle needs to be
considered if thrust reversers are used

The forecasting interval is assumed to be the same as the
forecasting period. For each mission a new calculation should be
undertaken.

Forecasting methods
Time-series analysis uses the history of the variable being

forecasted in order to develop a model for predicting future
values. To forecast using a time-series, it is necessary to represent
the behaviour of a stochastic process by a mathematical model that
can be extrapolated into the future, with a given prediction
interval.

The accuracy of a forecasting procedure can be quantitatively
described by the variance of the forecast error. It is always
desirable to have an estimate of the forecast error variance in order
to quantify the uncertainty, associated with the forecast. The upper
and lower limits of the prediction interval (PI), for a given
confidence level, are calculated by adding and subtracting to the
forecast a multiple of the standard deviation of the forecast error
according to the normal-theory Figure 1.

Figure 1: Forecast and prediction intervals for a generic parameter.

Three elements constitute a performance forecasting algorithm,
namely a mathematical model of the degradation, a forecasting
technique and a procedure to derive the prediction intervals.

PROGNOSTICS MODULE
The HMP process (Figure 2) consists of three articulated sub-

processes – Assessment or Diagnostics, Forecast and Operation
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and Maintenance Manager – these communicate with each other
and are divided into modules that perform the actual calculations.

Figure 2: Performance Health-Monitoring and Prognostics (HMP)
process.

The diagnostics analysis that precedes the forecasting
calculation is performed under two operating conditions. The first
is at take-off (and climb) looking at the TGT and shaft-speed
margins. The second, under cruise conditions, studies modules
performance parameters, such as efficiency and flow capacity. The
process includes forecasting algorithms to estimate the probability
of a deterioration level happening during the next time-period of
interest.

Maintenance support, flight operations, fleet management
reliability engineering and quality assurance teams would benefit
from the use of the health-monitoring and prognostics (HMP)
process that will provide extrapolations and advice based on the
expected long-term behaviour of the engine suffering from the
diagnosed condition.

Two different prognostics problems
Two techniques are presented for predicting gradual

deteriorations in different prognostics problems. Rapid
deterioration is taken into account through hazard plots that
influence the safety margins.

The Box-Jenkins ARIMA method (technique 1) has been
implemented to provide accurate forecasts for immediate and
short-term forecasting. Its applications in prognostics include:

- failure risk for a short-term lead-time (performance
rejection).

Regression analysis (technique 2) is designed to handle
prognoses that require medium- and long- term predictions: it
employs physical-based mathematical models of the degradation.
Its applications in prognostics include:

- failure risk for a medium or long term lead time horizon;
- identifying the optimum for the maintenance costs to

benefit ratio;
- facilitating the optimal management of the fleet.
An application of the ARIMA technique to the problem of

performance rejection is now presented.

Technique 1: ARIMA
The ARIMA method, is a combination of the autoregressive

(AR) and moving-average (MA) models (Box and Jenkins, 1976).
The AR model equation can be written as:

( 1)

where Xt is the time series. At represents normally-distributed
random errors, and and are the parameters of the
model, with the mean of the time series equal to

( 2)

The autoregressive model involves a linear regression of the
current value of the series against one or more prior values of the
series. The value of p is called the order of the AR model.

Instead the MA model equation can be written as:

( 3)

where Xt is the time series, X is the mean of the series, At-i are

random shocks to the series, and are the parameters of
the model. The value of q is called the order of the MA model.

The MA model is a linear regression of the current value of the
series against the random shocks of one or more prior values of
the series. The random shocks at each point are assumed to come
typically from a normal distribution. In this model, these random
shocks are propagated to future values of the time series. Fitting
the MA estimates is more complicated than with AR models
because the error terms depend on the model fitting. This means
that iterative non-linear fitting procedures need to be used in place
of a linear least squares fit.

In the standard regression situation, the error terms, or random
shocks, are assumed to be independent. That is, the random shocks
at the ith observation only affect that ith observation. However, in
many time-series, this assumption is not valid because the random
shocks are propagated to future values of the time series. MA
models accommodate the random shocks in previous values of the
time series in estimating the current value of the time series.

However the error terms after the model is fitted should be
independent and follow the standard assumptions for a univariate
process.

Therefore, according to the autoregressive and moving average
models, the ARMA model equation can be written as:

( 4)

where the parameters have the same meanings as for the AR and
MA models.

There are four primary-stages in devising an ARIMA time-
series model for forecasting – see Figure 3.

Figure 3: Prediction procedure – technique 1.

The advantages of ARMA models are that they are quite
flexible due to the inclusion of both autoregressive and moving-
average terms.

The application of an ARMA model to non-stationary time-
series requires transforming the series. In this case the full
methodology is called ARIMA, where the ‘I’ stands for integrated
and the index d indicates the order of the transformation.
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The sample correlation functions are used to diagnose the
presence of non-stationary behaviours in the data, as well as to
indicate the type of transformation required to remove them.

Power transformations coupled with differencing
transformations are included in the prognostics algorithm
described in this paper: they afford convenient methods of
transforming a wide class of non-stationary time-series.

The sample autocorrelation functions and the sample partial
autocorrelation functions are then used to identify the indexes p, q

that are the orders of the AR and MA models.
According to Box-Jenkins, (1976) the variance of the l steps

ahead forecast for any origin t can be estimated and assuming At-i

are normally-distributed, it follows that, given information up to
time t, the conditional probability distribution p(Xt+l/Xt,Xt-1,…) of
a future value of the time series will be normal with a mean t(l)X̂
and standard deviation estimated. Consequently the prediction
intervals (PIs) for a specified significance level α can be
calculated.

Technique 2: Regression
In regression analysis of time-series, historical data are

represented by mathematical models that are analytical functions
of time. A general form of model can be expressed as:

X = b0+b1z1(t) + ..bkzk(t) + ∈ ( 5)

where X is the variable we are studying, the {bi} are the unknown
parameters, {zi(t)} are mathematical functions of t, and ∈ is the
random component. The random component has an expected
value of zero E(∈) = 0, and variance V(∈

� � 2.
In particular, the three mathematical models of the degradation,

described and justified in the next paragraph have the following
form:

X = b0+b1z(t)+ ∈ t=t0,t0+1… t1 ( 6)

where t0,t1 denotes the current time period.
Forecasting consists of estimating the unknown parameters in

the appropriate model and using these estimates, projecting the
model into the future to obtain a forecast and its prediction
interval. Therefore the prediction procedure is divided into two
steps: the fitting procedure and the forecasting procedure.

A wide range of techniques can be used to estimate the
unknown parameters b0 and b1 in the way that the model best fits
the observations within the interval t0,t1. In this work, the least-
square method has been used. The estimates for b0 and b1 are
chosen to minimise the error or residual.

The procedure proposed here is based on the assumption that
the mathematical model is correct. The analysis includes a method
to consider the validity of this assumption, which gives as output
the best fitted model among the three considered by calculating
and comparing the Coefficient of Determination (Montgomery,
1990):
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R2 is used to judge the adequacy of a regression model. It
measures the amount of variability in the data accounted for by the
regression model ( X̂ ).

R2 always has a value between zero and unity, and the closer it
is to unity the better the model fits the data. The procedure
includes a limited number of models: therefore a threshold value
for R2 has been introduced. If R2 is less than 0.7 for the all three
curves, then none of the three models is suitable. In this case, a
different series interval t0,t1 should be considered. Particular care
should be paid when using different model without a physical
justification, for so doing unreasonable forecast could then ensue.

Although regression analysis is part of many forecasting
methods, a regression model can be used as forecasting technique
in its own right. The regression model can be used for estimation
and prediction (Montgomery, 1990).

By estimation, we mean evaluating the mean response over
time, that is the wish to estimate E(X|t). The point estimate of this
parameter is just the fitted value of the regression model at time t.
Then a 100(1-α) percent confidence interval for the mean of X at
the point t can be calculated, and, as a result, the normal-theory
prediction interval for future observations can be estimated.

The prediction procedure, corresponding to technique 2, is
summarised in Figure 4. Once the time elements are decided, the
forecasting method can be used. A pre-processing technique is
applied if the parameter under study is a measurement. The data in
the time period of interest are fitted with the three models (namely
equations (5), (6), and (7)). The best of the models, with the
highest coefficient of determination, is selected to perform the
prediction. If R2 is below a predetermined threshold, different
time-elements inputs are analysed. The model is extrapolated to
the time horizon and the prediction interval is calculated.

Figure 4: Prediction procedure- techique 2.

Technique 2: deterioration model
The failure rate versus time relationship for most mechanical

equipment can be modelled with the typical ‘bath-tub’ curve – see
Figure 5. Three phases are distinguished: run-in, design-life and
wear-out phases. The failure rate is high at the beginning, then
stabilises and increases again at the end of the life (Abernethy,
2000), (Li, 2002a).

Figure 5: Typical bath-tub curve showing operational phases.

As far as the gas-turbine degradation rate is concerned, we
observe that (excluding the wear-out phase) the rate of
performance deterioration usually diminishes with use; it starts off
at high rate and than settles down to low rate. It is thought that
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service use imposes distortion loads and differential thermal
growths, slightly in excess of those experienced during the post-
build engine running-in testing, which further wear seal
clearances. There comes a point, in service use, at which no
further wear due to the above occurs except under the rare
instances of some violent manoeuvre. Thus the mechanical
degradation rate diminishes (Crosby, 1986). What of course will
still continue, but generally at low rate, will be (i) the corrosion of
blades, (ii) the erosion of seals and blades due to contaminant and
particles in the air, and (iii) the fouling or deterioration caused by
the adherence of particulate contaminants to the gas turbine airfoil
and annulus surfaces.

To study and to model the evolution of the deterioration, we can
introduce two curves, one for the health-parameter level, Figure 6,
and one for the deterioration rate, i.e. its derivative. The curve in
Figure 6 shows a generic trajectory of component’s health
parameter: its derivative, that represents the deterioration rate,
follows a typical bath-tub curve. It has to be borne in mind that
the curves considered so far represent the statistical behaviour of a
given sample of engines (Sasahara, 1986) and not the behaviour of
any single engine. The technique described in this paper is based
on the assumption that, for the single engine under analysis, the
mathematical model of the deterioration does not vary during the
short-term that includes the data used for the forecasting and the
forecasting horizon. Nevertheless, any error related to this
assumption can be accounted for in the calculation of the
prediction intervals.

Figure 6: Typical evolution of deterioration, generic parameter. A
typical threshold of acceptance for a parameter is shown.

Moreover, in the most general case, if we focus on the design-
life phase, three rate trends are possible and therefore are taken
into account in the method proposed, as shown in

Figure 7:

a) increasing trend (linear)
b) constant trend
c) decreasing trend (linear or non linear)

Figure 7: Generic gas-path parameter deterioration rate. Three
models during design-life.

The corresponding level curves are:
a) trajectory that curves downwards (negative convexity)
b) straight line trajectory (linear)
c) trajectory that curves upwards (positive convexity)

In the prediction procedure described subsequently, in
accordance with other authors (e.g. Sasahara, 1986), the
decreasing rate trend (case c) has been chosen to be non-linear.

Typical model trajectories over time of the health parameters
are assumed to be the following (Figure 8):

a) X = b1 t2 + b0 ( 10)

for severe deterioration (negative convexity)

b) X = b1 t + b0 ( 11)

for linear deterioration

c)
01 btbX += ( 12)

for soft deterioration (positive convexity)

where X is the health parameter; t is time; and b0 and b1 are two
coefficients, with b1<0 for decreasing curves.

Figure 8: Three models for deterioration level curve. Generic
parameter.

Usually gradual deterioration during an engine’s life follows a
‘soft deterioration model’ with positive convexity, and then
changes behaviour to follow a ‘severe deterioration model’ with
negative convexity at the end of its life (Figure 9). Life in the
context of performance analysis is meant as the period that
terminates with the performance being inadequate for the desired
purpose, i.e. the engine is rejected from service.

Figure 9: Transition from soft to severe rates of deterioration.
Generic parameter.
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PROGNOSTICS-MODULE APPLICATION
The potentialities of engine-deterioration predictions are

considered via an example.

Performance rejections
These happen when the engine, because of the degradation

process, is not able to guarantee the required thrust under the hot-
day limit condition.

Civil aero-engines require for certification, a ‘maximum take
off rating’ a ‘maximum continuous rating’, and a defined ‘idle’.
Engines ratings are prescribed maximum levels of thrust
appropriate to different phases of flight. As far as the take off is
concerned, to achieve the same pay-load and range requirements
for both sea level and higher altitude runways, the engine has to be
run hotter for the airfields at higher altitude, in order to keep
approximately the same thrust.

The impact of ambient conditions on an engine’s performance
can be offset by “flat rating” the T.O. thrust – see Figure 10. This
results in an increase of turbine entry temperature (TET) and high
pressure shaft speed with ambient temperature, at least up to the
hot-day limit of flat rating.

At day temperatures exceeding the limit of flat rating, known as
the “Kink Point”, the TET is held constant and therefore the
guaranteed thrust/po reduces.

Figure 10: Typical rating curve.

When the engine degrades, the airlines have still to guarantee
that it is able to deliver the prescribed thrust under the prescribed
conditions (i.e. hot-day thrust). The engine is serviced when this
capability cannot be assured anymore, unless the airline reduces
the operating-temperature range.

Case Study
The problem addressed in this example regards the probability

that the aircraft can complete the next 10 missions, which, in the
scenario simulated, is the number of flights before the aircraft
returns to the location of the operator’s maintenance facility. This
investigation is limited to the TGT margin. For a short-time
prediction, the HMP process uses the ARIMA algorithm.

Figure 11 shows the TGT percentage changes from engine
performance model at actual power level (simulated data) plotted
against the number of flights. The ARIMA outcomes are for the
10 flights ahead forecast and the 95% (upper) prediction interval.
In the diagram, a safety margin indicating when a corrective
action should take place and a warning margin are plotted.

Two conclusions can be drawn by analysing the time-series.
The next 8 missions are safe with a 95 % confidence level. A
second type of information is that a warning occurrence is
predicted to be inside the prediction interval after the flight
number 66. This allows a more cost-effective maintenance plan
and mission schedule to be devised. This situation may result, for
example, in the prognosis that the aircraft can continue to operate
between city pairs in cooler climates, in which the engine operates
at cooler internal temperatures.
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Figure 11: Simulated data – TGT plot. Changes from engine
performance model at actual power level. 10 flights forecast ahead
and 95%PI.

CONCLUSIONS
‘Power by the Hour’ (trade mark held by Rolls-Royce) type

of contracts, which includes the capital cost plus a blend of
financing and maintenance after the engine’s sale, are increasingly
being demanded. In a similar manner General Electric’s
‘Maintenance Cost per Hour� ’ (MCPH � ) contracts and Pratt &
Whitney ‘Fleet Management Programme � ’ (FMP � ) contracts
offer long-term service agreements. These programs provide
engines maintenance on a flat rate per engine flight hour basis,
enabling airlines to accurately forecast operating costs, reduce cost
of ownership and improve asset utilization. The manufacturers
have to face this new challenge! In this scenario, performance-
deterioration modelling and prognostics capability become issues
of prime importance.

This paper focused on the details of forecasting algorithms
which can be applied to solve different prognostics problems in
engine-performance analysis, calculating the probabilities of a
gradual deterioration during various time periods. The algorithms
are integrated in a performance-health monitoring and prognostics
(HMP) process. Its strength is that by using time-series analysis,
rapid deteriorations can be detected and therefore gradual and
rapid deteriorations can be treated separately. The main goals of
the process are to perform accurate predictions and achieve
significant benefit with respect to mission scheduling,
maintenance planning and reduction in both fuel consumption and
costs of maintenance servicing. Being able to perform such
reliable prognostics is the key to effective condition-based
maintenance. The potentialities of predicting an engine’s
deterioration have been analysed, considering both safety and
economic factors.

Two techniques to handle different prognostic problems were
described. The Box-Jenkins ARIMA method has been
implemented to provide accurate forecasts for immediate and
short-term forecasting, whereas regression analysis is designed to
handle prognoses that require medium- and long-term predictions:
it is based on physical models of the deterioration.

A performance-rejection example has been considered. The
TGT’s percentage changes from the values of the engine
performance model under the actual power level (simulated data)
were plotted against the number of flights. The ARIMA outcomes
were the 10-flights ahead forecasts and the 95% (upper) prediction
interval. How the technique assists the prognosis has been
discussed.
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