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ABSTRACT
A description is given of the fundamental concept and

formulation and solution principles of classical math-
ematical methods to deal with problems of unsteady
aerodynamics, aeroacoustics and aeroelasticity of blade
rows. Then recent analytical studies on three model
problems are reviewed, and some new findings from the
studies are presented. Although the applicability of the
analytical methods is under severe restriction, they will
keep performing a cruicial role in the preliminary study
of new problems.

INTRODUCTION
Recently the share of papers based on analytical

methods presented in technical conferences related to
aerodynamics and aeroacoustics of turbomachines is be-
coming smaller and smaller, and CFD (Computational
Fluid Dynamics) and CAA (Computational Aeroacous-
tics) are now playing the dominant role in theoretical
studies of turbomachine fluid mechanics. Here analyt-
ical methods are meant by ’old-fashioned’ theoretical
methods to obtain the solution of the governing differ-
ential equations in mathematical forms, which explicitly
express physical quantities to be calculated in terms of
known parameters. The author would like to point out
that to obtain the final mathematical forms is not a
matter of simple task, and even the analytical methods
need to use high speed digital computers with highly
complicated computation programs in order to provide
final numerical data.

Applicability of most analytical methods is restricted
to flows inside and around systems of simple geometries
and phenomena where nonlinearity is not essential. On
the other hand in principle CFD and CAA can be free
from assumptions of small perturbations and lineariza-
tion, and they can deal with a wide variety of physical
systems and physical models if no cost is spared.

Copyright c©2003 by GTSJ
Manuscript Received on September 30, 2003

The advantage of analytical methods over CFD and
CAA is to enable one to conduct highly quick prediction
and extensive parametric studies at a low cost and to
gain clear insight into physics. It is true that the advan-
tage is decreasing year by year due to rapid progresses
of computer performances and computation algorithms.
Further it is also true that the problems which remain
to be studied by the analytical methods are becoming
scarce.

However CFD and CAA are still too expensive to deal
with combined physical models, and there are still some
model problems to which analytical methods have been
applied but not CFD yet. This paper briefly reviews
recent analytical studies conducted by the author:

• Flutter of multiple blade rows.

• Prediction of fan tone noise.

• Active control of gust-rotor interaction noise.

In particular new findings obtained from the an-
alytical studies are highlighted. This review indi-
cates the usefulness of analytical methods for prelim-
inary investigation into key factors and fundamental
understanding of new problems. They can also pro-
vide benchmarks for code validation of CFD and CAA
(Namba and Schulten, 2000). They will keep playing an
important role as pilots of advancing the frontiers of
knowledge.

SOLUTION PHILOSOPHY OF THE SINGU-
LARITY METHOD

All model problems reviewed herein are analyzed on
the basis of the method of singularity. It will be usuful
to summarize the common philosophy of solution.

In order for the analytical methods to be applied, it
is inevitable to describe the flow field as small pertur-
bations to a uniform steady base flow. Then we assume
the small disturbances are convected at the constant
velocity of the uniform base flow and propagate at the
uniform speed of sound of the base flow. Then the gov-
erning equations are linearized, and unsteady phenom-
ena can be described as linear sum of those of harmonic
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time dependence eiωt. But it does not necessarily mean
each frequency component is independent. In the model
problems of multiple blade rows in mutual motion, mul-
tiple frequency components are coupled with each other.

Since the base flow is irrotational, acoustic, vortical
and entropic disturbances are decoupled in the interior
of the fluid, but they are coupled at disturbing solid
surfaces, or surfaces of nonzero acoustic admittance.

Fig.1: Principles of modeling

All the surfaces which generate or modify the flow
disturbances are represented by surfaces of distributed
singularities, e.g., monopoles, dipoles, quadrupoles and
their combinations. For instance, consider an annular
duct model composed of a rotor and a stator and an
actuator surface on the duct wall as shown in Figure
1. Then rotor and stator blades which are exerting un-
steady force upon the fluid are represented as surfaces
of unsteady pressure dipoles of axses normal to the sur-
faces, while the actuator surface is expressed by a surface
of unsteady mass sources (monopoles combined with
dipoles with streamwise axses. Furthermore, if blades
are vibrating under nonzero steady loadings, then we
have additional singularities of various types (dipoles of
streamwise axses, quadrupoles, etc.) with strength pro-
portional to steady force times displacement amplitude.

Let q(x) denote the column vector of the disturbance
state variables (complex amplitude to be multiplied by
eiωt); density ρ, velocities u, v, w and pressure p, i.e.,

q(x) = (ρ, u, v, w, p)T. (1)

Here x denotes the position vector at a field point. Fur-
ther let the strength of singularities at a point ξ be de-
noted by

f(ξ) = (f1, f2, . . . , fn)T, (2)

where subscripts identify singularity surfaces and types
of singularities. Then the disturbances are expressed as
a sum of all disturbances generated from the singularity
surfaces in the form:

q = K∗f , (3)

where K(x − ξ) denotes a matrix of kernel functions:

K(x − ξ) =




Kρ1 · · · Kρn

Ku1 · · · Kun

...
. . .

...
Kp1 · · · Kpn


 . (4)

Here for instance, Kuk(x− ξ) denotes disturbance u(x)
induced by the k-th singularity of unit strength at ξ.

In general each kernel function is a solution to an
inhomogeneous Helmholtz equation in the form like

DHKuk(x − ξ) = Dukδ(x − ξ), (5)

satisfying the out-going wave conditions and the flow
tangency condition at the solid duct walls. Here DH

denotes the differential operator of the Helmholtz equa-
tion and Duk denotes an integro-differential operator
appropriate for the type of the singularity. Furthermore
∗ denotes the convolution product over the domain of
the singularity surface.

The strength of the singularities are determined so
that they satisfy the boundary conditions at singularity
surfaces, which can be written in the form

A [K]BS ∗f = b, (6)

where
b(x) = (b1, b2, . . . , bn)T, (7)

denotes prescribed external disturbances at the singular-
ity surfaces, e.g., downwash velocity of incoming acous-
tic disturbances or incoming vortical disturbances or ve-
locity of blades relative to the fluid in the case of blade
vibration. Furthermore A denotes an appropriate coef-
ficient matrix which can be specified in accordance with
the surface position, the types of singularities and the
types of the external disturbances.

What we should do is to solve differential equation
(5) for each kernel function, and to solve equation (6)
for singularity strength f , which usually take a form of
simultaneous integral equations. Then we can evaluate
the blade loadings from f itself, and the disturbances
q(x) at an arbitrary field point by calculating the con-
volution product given by equation (3).

One of the major tasks of the analytical methods is
to express the kernal functions in ’closed’ forms as so-
lutions to the inhomogeneous Helmholtz equations like
(5). This is not always easy, and demands sophisti-
cated mathematical skills. On the other hand it is quite
rare to be able to obtain an analytical solution of a set
of integral equations (6), and usually they should be
solved numerically. For this reason the methods are of-
ten called ’semi-analytical methods’. It is not unusual
that the expressions of kernel functions for the problems
of three-dimensional unsteady flows are highly compli-
cated. Therefore use of high speed digital computers
and careful coding of computation programs are indis-
pensable for conducting the numerical tasks based on
the analytical methods, too.

The present formulation is somewhat differ-
ent from that used by Topol (Topol, 1997),
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Hanson (Hanson, 1997) and Hall and Silkowski
(Hall et al., 1997). In their papers explicit discrimina-
tion is made between disturbances going upstream and
downstream, and also between acoustic and vortical
disturbances. In addition mechanism of reflection and
transmission of disturbances due to interaction with
blade rows are also explicitly described.

In our formulation the kernel functions satisfy the out-
going wave condition and automatically include acoustic
waves going upstream and downstream as well as vor-
tical and entropic disturbances being convected down-
stream. Equation (3) takes a form of a linear superposi-
tion of disturbances generated from all singularity sur-
faces as if they are individually independent disturbance
sources. But it in perfectly proper way describes the
disturbance flow field induced by original disturbances
b and involving reflection and transmission, because of
determination of the singularitiy strengths f from the
boundary condition (6) through which all singularities
are coupled with each other.

FLUTTER OF MULTIPLE BLADE ROWS
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Fig.2: Contra-rotating annular cascades.

To compute the unsteady flow field of rotor-stator in-
teraction is one of the main CFD problems of turboma-
chines, and many successful results have been obtained
so far. However, to deal with flutter problems of mul-
tiple annular cascades in mutual motion will still be an
extremely awkward task for CFD. But application of
the linearized cascade theory or lifting surface theory for
cascades to this problem is essentially of no difficulty.

With respect to the flutter problem of multiple
blade rows, special mention must be made of pio-
neering works conducted in Japan about thirty years
ago. The theoretical study based on the semi-actuator
disk model by Tanida (Tanida, 1966) and the experi-
ments and the linear cascade theory by Kobayashi et al
(Kobayashi et al., 1974, Kobayashi et al., 1975) should
be cited as the earliest works. Their theories assume
incompressible flows and therefore are unable to ac-
count for aeroacoustic interaction between blade rows
via cut-on acoustic duct modes. About fifteen years
later Butenko and Osipov (Butenko et al., 1989) devel-
oped a theory for oscillating subsonic linear cascades in
relative motion.

The subject is recently attracting a new attention
of turbomachine aerodynamicists. Hall and Silkowski
(Hall et al., 1997) presented an analysis based on a
linearized model of two-dimensional subsonic multiple

blade rows.
The author’s research group has conducted analyti-

cal studies on the contra-rotating annular cascades as
shown in Figure 2, where blades of one of the rotors
are vibrating under mutual aerodynamic interaction be-
tween both rotors. There have been developed three-
dimensional lifting surface theories for combinations of
subsonic and subsonic rotors (Namba et al., 2001), su-
personic and supersonic rotors (Namba, 2001), and sub-
sonic and supersonic rotors (Namba et al., 2003).

Those studies indicate that the influence of aeroa-
coustic coupling among blade rows on the aerodynamic
damping force is closely related to the states (cut-off,
cut-on or near resonance) of the acoustic duct modes
generated from oscillation of blades and aeroacoustic in-
teraction of both rotors in mutual motion.

The distinguishing feature of the problem is multipli-
cation of frequency and circumferential modes due to
interaction of blade rows in mutual motion.

Let numbers of blades of rotor 1 and rotor 2 be NB1

and NB2 respectively, and rotational angular velocities
of rotor 1 and rotor 2 be Ω1 and Ω2 respectively. Assume
that the blades of rotor 1 are vibrating with a single fre-
quency ω10 and an inter-blade phase angle 2πσ10/NB1,
so that the displacement normal to the blade chord of
the m-th blade is given by

a1(r, z)eiω10t+i2πσ10m/NB1 : m = 0, 1, ..., NB1 − 1. (8)

Here σ10 is an integer between −NB1/2 and NB1/2.
Then as described in details in references

(Namba et al., 2001, Namba, 2001), aeroacoustic
coupling between the rotors in mutual motion produces
flow disturbances of multiple frequencies, resulting in
blade loading of multiple frequencies. Thus we must
describe the unsteady blade loading (pressure difference
between upper and lower surfaces of blades) on the
m-th blade of each rotor as summations of multiple
frequency components:

∞∑
ν=−∞

∆p1−1,(ν)(r, z1)eiω1νt+i2πσ1νm/NB1

and
∞∑

µ=−∞
∆p2−1,(µ)(r, z2)eiω2µt+i2πσ2µm/NB2 , (9)

where

ω1ν = ω10 − νNB2(Ω1 − Ω2),
σ1ν = νNB2 + σ10, (10)
ω2µ = ω10 + (µNB1 + σ10)(Ω1 − Ω2),
σ2µ = µNB1 + σ10. (11)

Further subscripts 1-1 and 2-1 imply the loading on ro-
tor 1 blades due to vibration of rotor 1 blades them-
selves and the loading on rotor 2 blades due to vibra-
tion of rotor 1 blades respectively. It is worth empha-
sizing that all frequency components are coupled with
each other and can not be determined independently.
It implies that f in equation (6) is composed of multi-
ple frequency components, for which a set of equations
should be solved simultaneously.
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In the present problem acoustic disturbances are also
composed of multiple frequency components and multi-
ple acoustic duct modes. The frequencies ων,µ viewed
in the frame of reference fixed to the duct, and corre-
sponding circumferential wave numbers nµ,ν of the duct
modes are given by

ων,µ = ω10 + µNB1Ω1 + νNB2Ω2 + σ10Ω1, (12)
nµ,ν = µNB1 + νNB2 + σ10. (13)

(µ, ν = 0,±1,±2, . . .)

respectively. Hereafter we denote the acoustic duct
mode of (nµ,ν , �) by (µ, ν; �), where � denotes the radial
order.

Under this notation we can state that vibrating blades
directly generate (µ, 0; �) modes, which we call primary
duct modes. On the other hand the duct modes with
ν �= 0 are those arising from blade row interaction and
let those be called secondary duct modes. If all of the
primary modes are cut-off and if the rotors are remotely
separated, the influence of the neighboring blade row
will not be substantial.

We should note, however, that there also exist vor-
tical disturbances which are convected without decay-
ing. Therefore in the case of vibration of rotor 1, the
vortical disturbances from rotor 1 always exert a finite
influence on rotor 2 even if all primary duct modes
(µ, 0; �) are cut-off and however large the rotor-to-
rotor distance G may be. Further, any of the modes of
ν �= 0 resulting from the interaction can be cut-on, giv-
ing backward reaction to rotor 1. The previous studies
(Namba et al., 2001) indicate, however, that the vorti-
cal disturbances play only a minor role in the aerody-
namic interaction between the blade rows.

Fig.3: The work coefficient �[CW1−1,(0)] for bending vi-
bration of rotor 1. Axial Mach number Ma = 0.6, boss
ratio h = 0.7, number of blades: NB1 = NB2 = 40,
axial chord/duct radius: Ca1 = Ca2 = 0.1, blade tip
speed/axial velocity: Ω1 = −Ω2 = 1.0, reduced fre-
quency: ω10Ca1 = 0.5. Case of subsonic rotor 1 and
subsonic rotor 2

As a measure of unsteady blade loading a generalized
force coefficient CWj−k,(µ) is defined by

CWj−k,(µ) = π

∫ 1

h

√
1 + Ω2

jr
2dr

Fig.4: The legend is same as Fig.3, except; number of
blades: NB1 = 30, NB2 = 40, axial chord/duct radius:
Ca1 = 0.0633, Ca2 = 0.1, blade tip speed/axial velocity:
Ω1 = 3.0, Ω2 = −1.0, reduced frequency ω10Ca1 = 0.5.
Case of supersonic rotor 1 and subsonic rotor 2

×
∫ Caj/2

Caj/2

∆pj−k,(µ)(r, zj)aj(r, zj)dzj ,

(14)

where an overlined symbol denotes the complex con-
jugate. Then the aerodynamic work per cycle on the
vibrating blades of rotor 1 is given by �[CW1−1,(0)]

Example calculations are shown in Figures 3 and 4,
where the distance between the rotor centers is G =
2.0(Ca1 + Ca2)/2. Results of the isolated blade row
(Decoupled) are also plotted for comparison. Deviation
from the values for the isolated blade row (Decoupled) is
regarded as the influence of the neighboring blade row.

In the case of vibrating subsonic cascade (Fig. 3),
only a small number of primary duct modes are cut-
on. 　In the range of interblade phase angle where the
fundamental primary duct mode (0,0;0) is cut-on the in-
fluence of the neighbor cascade is not small and it never
decreases with increase of rotor-to-rotor distance G. Al-
though we can also observe some influence of neighbor
cascade in the range where (0,0;0) mode is cut-off, the
influence in this range is decreased by increasing G.

In the case of vibrating supersonic cascade (Fig. 4),
infinite number of primary duct modes are cut-on. In
this case conspicuous influence of neighbor cascade is
observed around resonance points of duct modes of low
orders.

A computation program to solve the coupled bending-
torsion flutter equations for contra-rotating annular cas-
cades was also formulated and coded.

Note that to search the critical flutter condition, we
should compute the aerodynamic force terms for vari-
ous values of the reduced frequency of blade vibration.
To this end computation by CFD may be too time-
consuming. On the other hand the present analytical
method is a very useful aerodynamic tool, which can
provide numerical values of aerodynamic force terms for
a given reduced frequency within a few seconds on a
conventional personal computer.

In the present flutter analysis the elastic properties
of blades are assumed uniform along the span and nat-
ural mode shapes are assumed same as those for the
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uniform flat plate. Vibration modes of the first and
second bending orders with the natural frequencies ωB1

and ωB2 and the first and second torsion orders with
the natural frequencies ωT1 and ωT2 are taken into ac-
count. The specified values are as follows; the mass ratio
Mb/(πρ0b

2
arT (1−h)) = 120, the normalized distance be-

tween the center of gravity and the elastic axis xeg/ba =
0.141, the normalized radius of gyration re/ba =

√
0.6,

the elastic axis position ze/Ca = −0.075, and the nat-
ural frequency ratios ωT1/ωB1 = 6.0, ωB2/ωB1 = 6.3,
ωT2/ωB1 = 18.0. Here Mb is the mass of a blade, and
ba = Ca/2.

Fig.5: Critical axial flow velocity for coupled bending-
torsion flutter in case of combination of subsonic and
subsonic rotors.

Figure 5 shows the dimensionless critical axial flow ve-
locity at the flutter boundary dependent on interblade
phase parameter σ10 . The aerodynamic and geometri-
cal conditions are same as those of Figure 3 except the
blade row distance G = 1.1Ca. We can observe that the
flutter velocity of the coupled blade rows is significantly
lower than that of the decoupled blade row in the region
where the duct mode (0, 0; 0) is cut-on.

The results of the studies suggest that the flutter char-
acteristics will be substantially modified by the presence
of neighbor cascades.

PREDICTION OF FAN TONE NOISE

Fig.6: Model for predicting a coupled fan noise.

It is a common understanding that interaction of sta-
tor vanes with oncoming rotor wakes is the main source
of the fan noise of turbofan engines. In earlier mod-
els the upstream rotor is treated only as a wake gen-
erator and interaction of the rotor blades with sound
waves generated from the stator was neglected. But re-
cent models (Topol, 1997) (Hanson, 1997) include the
effects of mutual aeroacoustic interaction between the
rotor and the stator, and it is shown that the scattering

effects are substantial. But their models compute the
scattering effects on the basis of 2-dimensional cascade
theory.

A prediction scheme on the basis of genuine three-
dimensional lifting surface theory has been developed by
the author for the model shown in Figure 6. Mathemat-
ical formulations can be achieved with a minor modifi-
cation of those for the previous section, i.e., we can just
put the rotational speed of the downstream rotor to zero
and express b in equation (6) by the wake upwash ve-
locity on the stator vane instead of relative upwash due
to blade vibration.

Fig.7: Acoustic powers of fan noise caused by rotor
wakes interacting with the stator vs the distance G be-
tween the rotor and the stator. ’Decoupled R-S’ means
no aeroacoustic interaction between the rotor and the
stator. Boss ratio h = 0.5, rotor tip speed /axial flow ve-
locity Ω1 = 1.566, axial chord/duct radius Ca1 = 0.1409
(rotor) and Ca2 = 0.2618 (stator), number of the rotor
blades NB1 = 24, number of the stator vanes NB2 = 32,
axial Mach number Ma = 0.5. Upstream acoustic power
EP−.

Fig.8: The legend is same as Fig.7, except: Downstream
acoustic power EP+.

Figures 7 and 8 show example calculations of acous-
tic powers for the fundamental blade passing frequency,
the second and the third harmonic frequencies. In this
case the component of the fundamental blade passing
frequency is not predominant, because duct modes for
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the fundamental blade passing frequency are close to
cut-off.

It is obvious that the acoustic power decreases as the
distance G between the rotor and the stator increases.
Special attention should be payed to the substantial
difference between the decoupled case and the coupled
case. In particular dependence on the distance G in the
coupled case is much higher than that in the decoupled
case. This implies that disturbances of cut-off modes
play a significant role in near field coupling. It indicates
that to take into account the aeroacoustic coupling be-
tween the rotor and the stator is essentially important
for precise prediction of fan tone noise.

Recently Tsuchiya et al. (Tsuchiya et al., 2002) pro-
posed a hybrid scheme, which calculates the unsteady
blade loading due to interaction with oncoming rotor
wakes by CFD and predicts the acoustic field by the
lifting surface theory. In order to make clear the level
of the approximation, let the blade loading function f
be expressed as

f = fw + fc, (15)

where fw denotes the blade loading due to interaction
with rotor wakes and without the rotor-stator aeroa-
coustic coupling, while fc denotes the additional blade
loading due to the rotor-stator aeroacoustic coupling.
Then equations (1) and (6) are written as

q = K∗(fw + fc), (16)

A[K]BS∗f c = b − A[K]BS∗fw. (17)

On the other hand the boundary condition under for-
mulation without the aeroacoustic coupling between the
rotor and stator can be written as

A[Kdc]BS∗fw = b, , (18)

where the terms denoting the rotor-stator coupling are
absent in the kernel function matrix Kdc.

It is the author’s understanding that Tsuchiya et al.’s
scheme is to numerically solve the original differential
equations by CFD to obtain fw instead of solving lin-
earized equation (18), and to compute the acoustic field
by

q = K∗fw. (19)

To compute fw by CFD is certainly an excellent idea.
The scheme may be, however, incomplete because the
aeroacoustic coupling effect f c is neglected. It will be
much more improved by solving equation (17) for fc

with substituting fw computed by CFD, and predict
the acoustic field by equation (16).

ACTIVE CONTROL OF GUST-ROTOR IN-
TRACTION NOISE

Application of the anti-sound technology to suppres-
sion of tone noise due to interaction of blade rows with
oncoming wakes or gusts is quite attractive because of
its high adaptability. This idea is not new, and some
studies have been conducted. However, experiments by
Thomas et al. (Thomas et al., 1994) and Ishii et al.
(Ishii et al., 1997) were not necessarily successful in case
of multiple cut-on modes.

r

θ

z

Fig.9: Annular cascade with an actuator surface on the
duct wall.

Recently analytical studies have been con-
ducted on the model shown in Figure 9
(Namba and Murahashi, 1999) (Namba et al., 1999).
The rotor with a number of blades NB and a rota-
tional speed Ω is supposed to interact with oncoming
sinusoidal gust of a circumferential wave number NG

which is stationary in the duct frame of reference. As
an anti-sound generator a duct wall actuator surface
like a loudspeaker diaphragm is considered.

The gust-rotor interaction induces an unsteady blade
loading with a frequency NGΩ and an interblade phase
angle 2πNG/NB. It generates tone noise of the blade
passing frequency and its harmonics νNBΩ and circum-
ferential wave numbers νNB + NG: (ν = ±1,±2, . . .).
The duct modes are spinning at angular velocities of
νNBΩ/(νNB + NG), and they are further decomposed
into multiple radial modes of mode order � = 0, 1, . . ..

The actuator surface is made oscillate in a circum-
ferentially travelling wave form at a frequency ν∗NBΩ
and with a circumferential wave number of ν∗NB +NG.
This motion generates duct modes of the circumferential
wave number of ν∗NB + NG and the spinning angular
velocity of ν∗NBΩ/(ν∗NB + NG) and also multiple ra-
dial orders.

Here we should note that interaction of the dis-
turbances generated from the actuator with the rotor
blades induces additional unsteady blade loading with
the same frequency and the same interblade phase angle
as those induced by the gust-rotor interaction, and gen-
erates additional tone noise with the same frequencies
and the same circumferential wave numbers as those of
gust-rotor interaction noise.

The blade loadings and the modal pressure ampli-
tudes can be calculated by use of the analytical method.
Denoting the mode order as (ν, �), we can express the
modal pressure amplitude which is a complex number
in the form

FP±(ν, �) = QGFPBG±(ν, �)
+ Bν∗{FPW±(ν∗, �)δν,ν∗ + FPBW±(ν, �)}.

(20)

Here subscripts BG, W and BW denote components of
the gust-rotor interaction, the direct sound from the ac-
tuator and the actuator-rotor interaction respectively
and + and − denote acoustic waves propagating in
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downstream and upstream directions respectively. Fur-
thermore QG denotes the gust velocity amplitude nor-
malized by the axial flow velocity, and Bν∗ denotes
the actuator displacement amplitude normalized by the
duct radius. The acoustic power is expressed in the form

EP± =
∑

ν

∑
�

S
(ν)
�± |FP±(ν, �)|2, (21)

where S
(ν)
�± is a coeffcient and summations are made only

for cut-on modes.

l

Fig.10: Dependence of the minimized upstream acoustic
power EP− and its modal components on the actuator
exciting mode ν∗.

The main problem is to determine the complex am-
plitude of the actuator Bν∗ to minimize EP± and also
to find the best choice of the exciting mode ν∗ of the
actuator. The analytical method enables one to obtain
a mathematical expression of the optimum amplitude
Bν∗ in terms of design parameters.

Figure 10 shows an example of the minimized acoustic
power dependent on the exciting mode ν∗ of the actu-
ator. In this case only the duct modes of ν = −1, � =
0, 1, 2, 3 are cut-on. It is a surprising finding that ex-
citation of the actuator with the cut-on circumferential
wave number ν∗ = −1 is unsuccessful, and the cut-off
mode number ν∗ = −2 is the best choice.

Fig.11: Modal structure of the component
FPBG−(−1, �).

Fig.12: Modal structure of the component FPW−(−1, �)
for ν∗ = −1.

Fig.13: Modal structure of the component
FPBW−(−1, �) for ν∗ = −1.

Fig.14: Modal structure of the component
FPBW−(−1, �) for ν∗ = −2.

Closer investigation into the modal structures of each
component of the pressure amplitude shown in Figures
11 - 14 reveals that relative relationship of complex am-
plitudes among different radial orders of FPW±(ν, �)
is essentially different from that of FPBG±(ν, �), while
FPBW±(ν, �) and FPBG±(ν.�) have similar relationship.
Therefore simultaneous cancellation of all cut-on modes
of FPBG±(ν, �) by FPW±(ν, �) themselves is impossible.

7



Instead, we can adopt a strategy of letting the ac-
tuator motion iteself generate FPW±(ν∗, �) of cut-off
modes only, and canceling FPBG±(ν, �) by the ’sec-
ondary’ noise FPBW±(ν, �). This deserves to be called
the aeroacoustic control rather than the acoustic con-
trol. The author would like to emphasize that such a
finding can only be made by an extensive study on the
basis of genuine three-dimensional cascade models.

CONCLUSIONS

• The flutter boundary of cascading blades is signif-
icantly influenced by the presence of neighbor cas-
cades in mutual motion.

• The interaction of fan blade wakes with stator vanes
is considered as the main source of fan noise of tur-
bofan engines. But to accurately predict the sound
field, the aeroacoustic coupling between fan blades
and stator vanes should be taken into account.

• Direct cancellation of gust-rotor interaction noise
of multiple cut-on modes by the anti-sound from
the secondary sound sources on the duct wall is in
general unsuccessful, because the modal structures
of the noise and the anti-sound are essentially dif-
ferent. Instead the noise may effectively be reduced
by generating secoundary sound composed of cut-
off modes only, and a new concept of aeroacoustic
control of noise arises.

Analytical methods will keep the usefulness for prelimi-
nary study of frontier problems and fundamental under-
standing of physics.
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