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ABSTRACT 

The internal cooling problem has been an issue of 

importance for the extending turbine blade life. This paper 

provides significant discovery of the improvement of 

simulation techniques for the flows inside a sharp U-curve 

duct. The finite volume difference method incorporated with 

the higher-order bounded interpolation scheme has been 

employed in the present study. For the purpose of 

comparison, the predictions with different turbulence models 

are also given. The results obtained through this research 

show that non-linear low-Re k-ω model and linear model 

produce the quite different secondary flow patterns. It is 

shown that the present non-linear model produces satisfactory 

predictions of the flow development inside the sharp U-curve 

duct.

NOMENCLATURE 

c,a                 weighted average coefficients  

( )9~1=iC
i

   turbulence modeling constants in Eq. (3)

D                    hydraulic diameter                                 

k                     turbulence kinetic energy 

P                    mean pressure 

k
P                    generation rate of

ji
uu

c
R                    radius of curvature of U-curve duct 

Re                   flow Reynolds number ( )ν/DW
b

≡

T
Re                  local Reynolds number  

,, ωβ RRR
k

       model constants 

ij
S                    deformation tensor 

U                     mean velocity in cross duct direction 

i
U                    mean velocity tensor 

u                      velocity fluctuation in crossduct direction 

ji
uu                  Reynolds stress tensor 

W                    mean velocity in streamwise direction 

w                     velocity fluctuation in streamwise direction 

b
W                    streamwise bulk velocity 

x                      crossduct direction 

y                     direction normal to the duct symmetry plane 

z                      streamwise direction 

Greek Symbols

βαα ,, *

00
        model constants 

ij
δ                   Kronecker delta 

ω                   specific dissipation rate  

ij
Ω                 vorticity tensor 

t
, µµ              laminar and turbulence viscosity 

ν                     kinematic viscosity 

Φ                   transport variable 

Superscript

WQ,           representation of QUICK and WACEB 

schemes, 

                       respectively 

INTRODUCTION

To increase the efficiency and the power of modern power plant 

and aircraft gas turbines, designers are continually trying to raise the 

maximum turbine inlet temperature. Over the last decade the 

temperature has risen from 1500K to 1750K in some high-

performance units. With this increase of the temperature only 25 

percent can be attributed to improved alloys. New materials, such as 

ceramics, could help increase this maximum temperature even more 

in the future. However, most of the recent improvements in inlet 

temperature come from better cooling of the blades and greater 
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understanding of the heat transfer mechanism in the turbine blade 

passage (Amano, 2001). It is very common that cooling passages is 

used in gas turbine blade to enhance the cooling performance. 

Insufficiently cooled blades are subject to oxidation, creep rupture, 

and even melting. Due to a limited size of the blade, the cooling 

passages are created with more than one bend with a sharp turn. The 

flow inside the cooling passages with a sharp turn is featured with 

strong secondary flows induced by streamline curvature, mainstream 

separation, and attachment. The interactions between secondary 

flows and separation lead to very complex flow patterns. To 

accurately simulate these flows, both refined turbulence models and 

higher-order numerical schemes are indispensable.  

The numerical studies on strongly curved U-duct have been 

carried out for years. Iacovides and Launder (1985) indicated that 

the wall-function approach had to be replaced by a low-Re 

turbulence model extending to the near-wall regions to predict the 

near-wall secondary flow with sufficient accuracy. Other studies 

(Besserman and Tanrikut, 1991; Xia and Taylor, 1993)) showed that 

the flow features through curved bends, even with moderate 

curvature, cannot be accurately simulated using the standard ε−k
model with the wall function approach. The main flow features and 

secondary multi-vortices in a mild-curved duct can be modestly 

captured using a low-Re turbulence models over the entire flow 

domain. Iacovides et al. (1996) conducted numerical investigation 

on the flow inside a sharp U–bend by using several different 

turbulence models including a high-Re ε−k  model with one-

equation in the near-wall regions, a high-Re algebraic-stress model 

(ASM) with one-equation in the near-wall regions, a low-Re ASM 

model where the dissipation rate of turbulence is obtained 

algebraically within the wall viscous-sublayer, and a low-Re ASM 

model where the dissipation rate equation is solved over the entire 

flow domain. They concluded that turbulence anisotropy within the 

duct core and the wall viscous-sublayer has a strong influence on the 

flow development. Although the results they obtained with two low-

Re ASM models were much improved compared with early work, 

the profiles in the separated region and downstream region from the 

reattachment point were still not satisfactory. They indicated that the 

second-moment closure model might be needed for more accurate 

predictions for such complex flows. The employment of the full 

Reynolds-stress transport models (RSM) has been one of the options 

to simulate the cooling passages in the gas turbine such as the work 

by Bonhoff et al. (1997) who presented the heat transfer prediction 

for rotating U-shaped coolant channels using RSM and demonstrated 

that reasonable agreement was achieved with the experimental data 

for averaged heat transfer rates in the first passage of the channel, 

while the heat transfer in the second passage was overestimated. 

Another example is the work by Chen et al. (1999) who also 

employed the RSM model for computing rotating two-pass square 

channels presenting accurate predictions of the three-dimensional 

flow and heat transfer characteristics resulting from rotation and 

strong curvature. However, one of the serious drawbacks of the use 

of RSM is that it requires a large memory size with a long CPU time 

to obtain reasonable results; thus is not practical for most of the 

industrial applications. For this reason, several researchers (Speziale, 

1987; Nishizima and Yoshizawa, 1987; Shih et al., 1993) have 

focused on new two-equation models in which the quadratic terms of 

strain-rates are introduced into the stress-strain relation. These 

models can represent the anisotropy of Reynolds normal stresses, but 

do not have any effects of extra strain-rates on the shear stresses. 

Craft et al. (1993) proposed a non-linear ε−k  model and Song and 

Amano (1998) developed a non-linear ω−k  model in which the 

cubic terms were introduced in the strain-stress relation in order to 

represent the effects of extra strain-rates on turbulence shear stresses. 

It was reported that the ω−k  model has significant advantages 

over the ε−k  model in simulating three-dimensional geometry 

flows due to its possession of a superior stability property, thus 

stabilizing the numerical formulations. This is because the E terms 

and Yap correction appearing in the standard ε-equation are no 

longer needed in the transport equation for specific dissipation rate 

ω . Their study on turbulent flows with rotation and curvature also 

showed that the non-linear ω−k  model proposed by them well 

predicted such flows. In the present study, the non-linear low-Re 

ω−k  model is employed to simulate the complex flow inside the 

sharp U-curve duct. 

It has been recognized that the first order scheme is sufficiently 

enough for the computations of the εandk  transport equations 

since the source and sink terms in their transport equations dominate 

in their distributions over the convection and the diffusion terms. 

However, many researchers like Bo et al. (1995) demonstrated that 

such first order numerical schemes produced very unsatisfactory 

results for a flow in a turned duct and concluded that it was essential 

to employ higher-order schemes for convection on the turbulence 

quantities as well as the mean flow variables. Therefore, Iacovides et 

al. (1996) employed a scheme based on a local oscillation-damping 

algorithm (Zhu and Leschziner, 1988) to discretize the governing 

equations. However, this scheme introduced the second-order 

diffusion into the regions where QUICK displays unbounded 

behavior. Therefore, a higher-order bounded interpolation scheme 

WACEB by Song et al. (1998) (weighted average coefficients 

ensuring boundedness) is adopted in this paper. 

In the present study, the model comprised of the non-linear low-

Re ω−k  turbulence model and the higher-order numerical scheme, 

WACEB, is used to simulate the flow through a U-curve duct with 

the curvature Rc/D=0.65. In the present paper, we also represent the 

predictions for the curvature of 3.35. The Launder-Sharma (L-S) 

model (linear low-Re ε−k  model) was examined in the 

computations for the purpose of comparison. The success of the 

present predictions indicates that the model can be applied to the 

flow through a coolant passage in an actual gas turbine blade. 

GOVERNING EQUATIONS 

For steady-state turbulent flows, the averaged governing 

equations in an arbitrary coordinate system are written as 

follows: 
To solve the above momentum equations, appropriate closure 

models must be provided for the Reynolds stresses. In the present 

study, a non-linear low-Re ω−k  proposed by Song et al. (1999) is 

adopted. That is, 
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Turbulence viscosity is determined from, 

ωαµ /*k
t

=                                      (4) 

where k  and ω are the turbulent kinetic energy and specific 

dissipation rate, respectively. 
*α  is a low-Re damping function 

introduced by Wilcox (1993) for a low-Re number flow near walls. 

The deformation and vorticity tensors are defined as: 
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The previous numerical study by Song and Amano (1998) for 

channel flow and curved channel flow as well as rotating channel 

flow shows that the optimal values for the coefficients in Eq. (3) are 

given in Table 1. 

Table 1. Constants appearing in turbulence model. 
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     The equations for kinetic energy and specific dissipation 

rate are given as: 
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P  denotes the turbulence production term and is defined as 
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where the constants are given in Table 2. 

At the wall boundary, specific dissipation rate ω is given as 

 wall)(smooth0
2

2*
→= +yfor

yρβ
µω

(8)

where y  denotes normal distance away from the wall. Here, care 

must be taken to accurately compute ω through the viscous sublayer. 

Wilcox (1993) recommended that the first 7~10 grid points must be 

located in the viscous sublayer ( 5.2≤+y ).

       Table 2. Constants appearing in turbulence model 
*σσ = β *

0
α 0

α βR
k

R ωR

0.5 3/40 1/40 1/10 8 6 27/10 

NUMERICAL METHOD 

       In the present work, the governing equations in a general 

curvilinear coordinate system are discretized by using the non-

staggered finite-volume method. The coupling of the pressure and 

velocity is achieved through the SIMPLE algorithm (Patankar, 

1980). A special interpolation procedure developed by Rhie and 

Chow (1987) is employed in which the flux flowing through a 

control volume surface is linked with the pressure at the neighboring 

nodes to prevent numerical oscillations which arise from decoupling 

of pressure gradient and velocities due to a non-staggered grid 

arrangement.

      The numerical studies (Song et al., 1998 and Bo et al., 1995) 

showed that the higher-order numerical schemes should be applied 

in simulating complex flows in order to obtain the reliable and 

accurate results. In the present paper, a higher-order bounded 

scheme, WACEB, developed by Song et al (1999) is employed for 

computations.
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Figure 1. U-bend geometry
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       The turbulent flow through a square-sectioned U-curve duct 

with a curvature ratio 65.0=DR
C

, as shown schematically in Fig. 

1, is numerically simulated in the present study by using the non-

linear ω−k  model. The flow Reynolds number based on the 

hydraulic diameter and bulk velocity is 100,000. The experimental 

study was carried out by Cheah et al., (1994).  Only the flow in the 

one half of the duct is computed because of the symmetry of flow 

configuration. The inlet conditions at three diameters upstream of 

the bend entry, which best matched the available measurements, 

were generated from separate calculations of developing flow in a 

straight duct that has the same mean-flow Reynolds number as in the 

experiment and assigned here. At the duct exit which is located at 

nine diameters downstream from the bend exit, the zero-gradients 

for velocities and turbulent quantities were employed.  

       On the cross-sectional plane, a non-uniform grid of 97× 50 in 

the normal and radial directions was employed, with mesh refined in 

the near-wall region, as shown in Fig. 2. In the stream-wise 

direction, 150 stream-wise planes were used, consisting of 20 planes 

in the upstream sections, 70 planes within the bend, and 60 planes 

downstream. The grid sensitivity tests of Bo et al. (1995) showed 

that, provided that a higher-order scheme (LODA) was used for the 

discretization of all the transport equations, these grids were 

sufficiently fine to prevent numerical errors from deteriorating the 

solutions. In the present study, the first eight grid-points near the 

walls are located within the viscous layer )5.2( ≤+y .

Figure. 2 Numerical  grids.
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       The predicted mainstream velocity profiles along the 

symmetrical plane are shown in Fig. 3 and compared with the 

experimental data (Cheah et al., 1994). The results computed by 

using Launder-Sharma model are also included in the figure. It is 

observed that the flow is strongly accelerated along the inner wall 

from the bend entry (
o0=θ ) to the plane 

o45=θ , while the flow 

is decelerated along the outer wall due to the centrifugal forces 

induced by curvature. Because of the strong acceleration, the 

separation occurs at the 
o90=θ  plane near the inner wall. Then the 

separation bubble grows wider, which in turn results in the flow 

along the outer wall accelerating. The separation bubble reaches to 

its maximum width in the plane Dz 1= downstream from the bend 

exit. In the plane Dz 3= , the flow reattaches to the inner wall and 

recovery process begins. Comparing with the experimental data 

(Cheah et al., 1994), it is noticed that the present model well 

reproduces the flow development pattern and produces the 

satisfactory results. It is observed that the predicted results by using 

the Launder-Sharma model are less satisfactory.  It is clearly seen 

that the Launder-Sharma model produced a narrower and longer 

separation bubble than the non-linear ω−k  model did. It can be 

concluded that the present low-Re k- model has ability to represent 

the influence of turbulence anisotropy within the duct core and wall 

sublayer on the flow development by strong curvature. It is also 

noticed that the velocity profile at the plane Dz 3=  is a little 

unsatisfactory, which means the predicted recovery after 

reattachment is a subtle slower than experiment data (note that the 

results with the linear Launder-Sharma model are even worse).

It is suggested that the further improvement on the model after 

reattachment is needed. The predicted mainstream velocity contours 

are illustrated in Fig. 4.  From the planes 
oo 90 to0 == θθ , the 

variation of the mainstream velocity along y-direction is mainly 

limited by the near bottom-wall regions. In the plane 
o90=θ , the 

separation in the near-wall occurs near the symmetrical plane. In the 

separated regions, the flow exhibits very complex three-

dimensionality. The separation bubble squeezes the fluid to outer 

wall and the secondary flow induced by the centrifugal forces carries 

high momentum fluids from the duct core to the outer wall regions, 

which all cause the flow along the outer wall to be accelerated. 

Beyond the plane Dz 3= , the three-dimensionality strongly 

remains. It is noted that the significant difference exists between the 

predictions by using the non-linear ω−k  model and Launder-

Sharma model. 

 The distributions of the cross-duct velocity (secondary velocity) 

component are compared with the experimental data in Fig. 5 along 

the symmetrical plane. The positive velocities at the bend entry 
o0=θ  indicate that a strong inward motion at the bend entry is well 

predicted by using the present ω−k  model. But it is quite 

uncertain why the discrepancy in the magnitude of the velocity 

between the prediction and the experimental data is so distinctive, 

although the computed trend faithfully simulates the experimental 

data. The calculations of Iacovides et al. (1996) showed that the four 

models including two low-Re ASM models all produced much lower 

outward velocities. In this figure, it is seen that the present model 

gives very satisfactory radial velocity distributions. It is also noticed 

that in the separated regions of the plane 
o180=θ , the radial 

velocity is higher than the experimental data, which is consistent 

with the mainstream velocity profile (lower separated velocities) in 

this plane.

       Figure 6 shows the comparisons of turbulence normal stresses 

between predictions and measurements in the streamwise along the 

symmetrical plane. The predicted turbulence normal stresses agree 

well with the experimental data near the outer wall.  It is seen that 

the present model produces the quite promising profiles for normal 

stresses near the inner wall and separated regions, which are very 

similar to experimental data. However, it has to be pointed that 

notable discrepancies are still present.

CONCLUSIONS

       In this study, the non-linear ω−k , the low-Reynolds number 

(L-S) model as well as the higher-order bounded interpolation 

scheme (WACEB) has been employed to simulate the complex 

three-dimensional turbulent flow inside the U-curve duct with a 

sharp curvature. The comparisons between predicted results and 

experimental data show that the present non-linear model can well 

produce the flow development inside the U-curve duct.  Compared 

with the linear Launder-Sharma model, it suggests that the present 

non-linear model well captures the characteristics of the turbulence 

anisotropy within the duct core region and wall sublayer and then 

leads to satisfactory simulations of flow development inside the U-

curve duct. However, none of the turbulence models can predict 

turbulence quantities properly beyond the reattachment. 
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Figure 3. Mainstream velocity profiles along

symmetrical plane (Square symbols, Cheah et

al. (1994); Solid line, present calculation with

non-linear ω−k  model; Dashed line, present

calculation with Launder-Sharma model.
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Figure 4. Predicted mainstream velocity contours (Left: non-linear

ω−k  model; Right low-Re k-ε model) for Rc/D=0.65.
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Figure 5. Secondary velocity profiles along the 

symmetrical plane (Square Symbols, Cheah et al. 

1994; Solid line, present calculation with non-linear

ω−k model; Dashed line, present calculation with 

 Launder-Sharma model. 
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Figure 6. Reynolds stress profiles along the 

symmetrical plane. (Square symbols, Cheah et al. 

(1994); Solid line, present calculation with non-linear

ω−k model; Dashed line, present calculation with 

Launder-Sharma model. 


