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ABSTRACT
The assessment and improvement of a second-moment tur-

bulence closure model is considered in predicting the fully
developed turbulent channel flow rotating about the channel
span. The computations are undertaken for Re=5000 and
5800, while the channel rotation speed ranging for 0 ≤ Ro
≤ 1.5, with Ro being the rotation number. The detailed com-
parison with available DNS data is made in terms of the bud-
get of individual Reynolds stress components. It is indicated
that the system rotation causes the increase in anisotropy of
dissipation rate tensor, where the dissipation rate of span-
wise normal stress component, ε33, is diminished, instead of
the wall-normal component ε22 that is otherwise the small-
est among the diagonal components. An improvement to the
existing model has been proposed, where ε33 is damped ac-
cording to the increasing rotation number. The agreement
with the DNS up to Ro=1.5 has been achieved.

NOMENCLATURE

A Flatness factor of aij (= 1 − 8/9(A2 − A3))
A2 Second invariants of aij(= aijaji)
A3 Third invariants of aij(= aijajkaki)
aij Anisotropy tensor of Reynolds stress
Cij Coriolis term in uiuj-equation
d Half width of channel
k Turbulent kinetic energy(= uiui/2)
P Mean pressure
P ∗ Reduced pressure (= P − ρΩ2r2/2)
Pij Production rate of uiuj

Pk Production of k
Re Reynolds number (= 2Umd/ν)
Ret Turbulent Reynolds number(= k2/νε)
Ro Rotation number (= 2Ωd/Um)
Ro(y) Local Rosby number(= −(dU/dy)/2Ω)
Tij Turbulent diffusion of uiuj

Ui Mean velocity component
Um Bulk mean velocity
ui Fluctuating velocity component
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uτ Friction velocity
uiuj Reynolds stress
Vij Viscous diffusion of uiuj

xi Rotating coordinate system

Greeks
δij Kronecker’s delta
ε Dissipation rate of k
εij Dissipation rate of uiuj

εijk Eddington’s tensor
φij Redistribution of uiuj

ν Kinematic viscosity
Ωi Angular velocity of system rotation
ρ Fluid density

Subscripts
( ) Time averaged quantities
( )′ Quantities on rotating system

INTRODUCTION
The pioneering experimental investigation of rotating tur-

bulent duct flows by Hill and Moon (1962), Moon (1964),
and Moore (1967) demonstrated the action of the Coriolis
forces on the mean flow and indicated a rotation-induced al-
teration in the turbulence field. The flow visualizations and
more detailed measurements by Johnston et al. (1972) and
Johnston (1973) revealed that the turbulence level in their ro-
tating water channel was enhanced along the pressure (lead-
ing) side and was correspondingly reduced along the suction
(trailing) side of the channel. They also observed the de-
velopment of large-scale Taylor-Görtler-like vortices on the
pressure side of the channel, while a nearly total suppres-
sion of turbulence was observed along the suction side. This
re-laminarization occurred for the lower Reynolds number
at relatively high rotation rates. Similar rotation-induced ef-
fects on developing turbulent boundary layers were also iden-
tified by Koyama et al. (1979). The alternation of flow field
affects heat transfer characteristics as well. In addition, cen-
trifugal buoyancy force was found to enhance heat transfer
on both sides (Willet and Bergles, 2002 and Yamawaki et al.,
2002).

The above-mentioned experiments have aimed at rather
fundamental studies on rotation-induced flows, and the direct

1

Proceedings of the International Gas Turbine Congress 2003 Tokyo
November 2-7, 2003



Yamawaki et al.(2002)

Willett and 

Bergles  (2002)

Nakabayashi and

 Kitoh.(1995)

Johnston 

et al. (1972)

Moore (1967)

Halleen and 

Johnston (1967)

Industrial

Engines

Re
103 104 105 106

Ro

10-3

10-2

10-1

100

101

102

Fig.1: The comparison between the parameters tested in pre-
vious studies and industrial engines

application to engineering relevant problem is not feasible.
Figure 1 summarizes the condition of experimental studies
in the past in terms of Reynolds number Re, based on the
bulk mean velocity Um and the channel width 2d, and rota-
tion number Ro, defined by Ro=2dΩ/Um, that represents the
ratio of Coriolis force and inertia force, with Ω being the rate
of system rotation. The highest Ro that has been tested in
previous studies is 0.1; comparing to the condition of indus-
trial gas turbines which operate at Ro=10 or higher, there are
discrepancies in two orders of magnitude. This remarkable
discrepancy is attributable to technical limitation in experi-
ments, and it is unlikely that fundamental laboratory experi-
ments will be extended to the realistic condition in the near
future.

On the other hand, the progress in high performance com-
puters has made it possible to perform numerical simula-
tions under the condition closer to engineering interest. To
make the effects of Coriolis forces clear, direct numerical
simulation (DNS) and large-eddy simulation (LES) of ro-
tating channel flow have been undertaken in several studies.
Kristofferssen and Andersson (1993) carried out DNS of ro-
tating channel flow at Re=5800 and Ro≤0.5. They reported
alternation in mean velocity profiles, Reynolds stresses and
wall shear stress due to Coriolis force; they also reproduced
secondary flow pattern similar to Taylor-Görtler vortices.
Later, the budget of Reynolds stress transport equations are
reported by Andersson and Kristofferssen (1995). More re-
cently, Lamballais et al. (1996) and Lamballais et al. (1998)
computed rotating channel flow at Re=5000 and Ro≤1.5 by
means of DNS and at Re=14000 and Ro≤1.5 by LES. To the
present authors’ knowledge, their study takes up the highest
Ro among those found in literature.

For engineering applications, computations based on
Reynolds-averaged Navier-Stokes (RANS) equation are still
the most feasible approach, and taking into account extreme
difficulties for LES to resolve thin boundary layers at high
Re, it is likely that the RANS models persist as the best engi-
neering tool for next decades. Above all, eddy viscosity tur-
bulence models, typically based on two turbulence parame-
ters, are most popular and adopted in every commercial code.
The problem in these models is that they are not able to repre-
sent the direct influence of Coriolis force on turbulent quan-
tities because it does not appear in the transport equation of
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Fig.2: Schematics of the rotating channel.

turbulent kinetic energy. Hence, there are numerous studies
where extension of anisotropic eddy viscosity model to ro-
tating flow is investigated. Recent study by Nagano and Hat-
tori (2002) proposed an anisotropic k-ε model with modified
model transport equation for dissipation rate, and showed
possibility of prediction of rotating flow by eddy viscosity
models.

The present authors’ opinion is, however, that the second-
moment closure is straightforward and more appropriate ap-
proach to turbulence with rotation than extension of eddy vis-
cosity models, since the effect of rotation is at least partly
treated in its exact form in the transport equation of individ-
ual Reynolds stress. Admittedly, second-moment closures
require more computational efforts compared to eddy viscos-
ity models due to numerically unstable characteristics of the
equation system (Obi et al., 1991), and there are still ambigu-
ous features even in the state-of-the-art modeling strategies.
Nevertheless, it is evident that the second-moment closures
are capable of taking into account various physics relevant
to engineering problems. The aim of the present study is,
therefore, to develop a second-moment closure model that
is applicable to turbulent flow with system rotation at high
speed. To this end, computations are performed for fully de-
veloped channel flow so that detailed comparisons with avail-
able DNS are possible. The discussion on the possibility of
new model for dissipation tensor of Reynolds stress transport
equations is considered.

COMPUTATION

Governing Equations
Fully developed turbulent flow between two infinite par-

allel walls rotating around the span-wise axis is considered,
cf. Fig. 2. The walls are named pressure (unstable) or suc-
tion (stable) side, respectively, according to customary. The
resulting flow, which is assumed to be incompressible, is
characterized by the following mean streamwise momentum
equation:

0 = −1
ρ

∂P ∗

∂x
− d

dy
uv + ν

d2U

dy2
(1)

In the above equation, the gradient of reduced pressure
P ∗ = P −ρΩ2r2is uniform in entire flow field. Also, Eq. (1)
shows that the total shear stress varies linearly across the
channel as in non-rotating flow.

The exact equation governing Reynolds stress transport
can be written as

Duiuj

Dt
= Pij + Cij + Vij + Tij + φij − εij (2)

with
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Pij = −
(

ukui
∂Uj

∂xk
+ ukuj

∂Ui

∂xk

)
,

Cij = −2 (εiklΩkuluj + εjklΩkului) ,

Vij =
∂

∂xk

(
ν

∂uiuj

∂xk

)
,

Tij = − ∂

∂xk

[
ukuiuj +

1
ρ
p (ujδik + uiδjk)

]
,

φij =
p

ρ

(
∂ui

∂xj
+

∂uj

∂xi

)
,

εij = 2ν
∂ui

∂xk

∂uj

∂xk
,

where the over-bar indicates the quantities after ensemble av-
eraging. The terms Pij , Cij , Vij , Tij , φij and εij are iden-
tified as production, Coriolis production, viscous diffusion,
turbulent diffusion including the pressure diffusion, redistri-
bution, and dissipation of uiuj . Among them, Pij , Cij and
Vij are treated in exact form while the others need to be mod-
eled.

Turbulence Model
In this work, the model developed by Launder and Shima

(1989) has been selected because it predicts a variety of
flows fairly well despite that its relatively simple formulation
(Jakirlić, 1997). The model formulation is briefly reviewed.

For the turbulent diffusion, the generic gradient diffusion
model of Daly and Harlow (1970) is adopted:

Tij = − ∂

∂xk

(
Cs

k

ε
ukum

∂uiuj

∂xm

)
. (3)

The sum of the dissipation and redistribution terms is ex-
pressed as:

−εij + φij = −2
3
εδij + φ(1)ij + φ(2)ij + φ(3)ij

+φw
(1)ij + φw

(2)ij + φw
(3)ij (4)

where φ(1)ij is the slow redistribution term including the
anisotropic part of dissipation, φ(2)ij is the rapid part, and
φ(3)ij is the redistribution term due to Coriolis production.
φw

(1)ij , φ
w
(2)ij and φw

(3)ij are wall reflection terms of redistri-
bution terms respectively. For these redistribution terms, the
following models are adopted:

φ(1)ij = −C∗
1 εaij , (5)

φ(2)ij = −C∗
2

(
Pij − 2

3
δijPk

)
, (6)

φ(3)ij = −1
2
C∗

2Cij , (7)

where aij in Eq. (5) is the anisotropy tensor of Reynolds
stress (aij = uiuj − 2/3kδij), and Pk in Eq. (6) is the pro-
duction rate of k, (Pk = Pii/2).

Table 1: Model Constants

C1 C2 C ′
1 C ′

2 Cs Cl Cε1 Cε2 Cε

2.58 0.75 1.67 0.50 0.22 2.5 1.45 1.9 0.18

Wall proximity effects on the redistribution process are
represented by additional terms written as:

φw
(1)ij = −C∗

1

ε

k

(
ukumnknmδij − 3

2
ukuinknj

−3
2
ukujnkni

)
fw (8)

φw
(2)ij =

C ′∗
2

C∗
2

(
φ(2)kmnknmδij − 3

2
φ(2)iknknj

−3
2
φ(2)jknkni

)
fw (9)

φw
(3)ij =

C ′∗
2

C∗
2

(
φ(3)kmnknmδij − 3

2
φ(3)iknknj

−3
2
φ(3)jknkni

)
fw (10)

where fw is an empirical function to control the wall prox-
imity effect, which appears in the present study as:

fw =
k3/2

εCl

(
1
y

+
1

2d − y

)
. (11)

The model coefficients are determined by:

C∗
1 = 1 + C1

{
1 − exp

[
− (0.0067Ret)

2
]}

AA
1/4
2 (12)

C∗
2 = C2A

1/2 (13)

C ′∗
1 = −2C∗

1/3 + C∗
1 (14)

C ′∗
2 = [2 (C∗

2 − 1) /3 + C∗
2 + |(C∗

2 − 1) /3 + C∗
2 |] /2

(15)
The dissipation rate of turbulent kinetic energy ε, appear-

ing in Eq. (4), is computed by the following transport equa-
tion:

Dε

Dt
= (Cε1 + ψ1 + ψ2)

ε

k
Pk − Cε2

εε̃

k

+
∂

∂xm

(
Cε

k

ε
umul

∂ε

∂xl
+ ν

∂ε

∂xm

)
, (16)

where

ε̃ = ε − 2ν

(
∂
√

k

∂xl

)2

. (17)

The functions ψ1 and ψ2 in Eq. (16) are defined as:

ψ1 = 1.5A (Pk/ε − 1) , (18)

ψ2 = 0.35 exp
[
− (0.002Ret)

1/2
]
(1 − 0.3A2) . (19)

ψ1 has the effect to reduce turbulence length scale, and ψ2

controls re-laminarization of turbulent flow under favorable
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Fig.3: Mean velocity profile for Re=5800, Ro=0∼0.50 and
Re=5000, Ro=1.50

pressure gradient. The values of the model constants used in
this study are summarized in Table 1.

Numerical Method
The above equations were solved by finite volume method

with collocated grid arrangement (Obi et al., 1991, Jakirlić,
1997). Rectangular grids were used, which comprised
non-equidistantly distributed 200 control volumes in the y-
direction. The distance between the wall and nearest node
was determined to be y+ = yuτ/ν ≈0.1, and the distance
between each node was increased in a geometric progres-
sion with an expansion ratio of about 1.05. On the solid
wall, Reynolds stress and the mean velocity were set to 0,
while a finite value was assigned to the dissipation rate as

ε = 2ν
(
∂
√

k/∂xl

)2

, which represents the exact limit.

RESULTS AND DISCUSSION

Computation by Original Model
Results of computations for rotating channel flows are pre-

sented for Reynolds number Re=5000 and 5800, based on the
bulk mean velocity Um and the channel width 2d, in order
to compare with the data of DNS by Kristofferssen and An-
dersson (1993) and Lamballais et al. (1998). For this appli-
cation, different values of the rotation number Ro=2dΩ/Um

are considered, which corresponds to 0≤Ro≤0.5 at Re=5800
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Fig.4: Reynolds Stress u2 for Re=5800, Ro=0∼0.50 and
Re=5000, Ro=1.50

and Ro=1.5 at Re=5000.
Figure 3 compares the mean velocity predicted by the orig-

inal model and those from the corresponding DNS. The ver-
tical axis is normalized by the bulk mean velocity Um and
the horizontal axis by the channel width 2d. The left- and
right-hand sides of the graph correspond to the pressure- and
the suction-side, respectively. The result by DNS indicates
that the velocity profile becomes gradually asymmetric about
the center of the channel as the rotation rate increases. The
computations by the original model represent this trend fairly
well up to Ro∼0.5. However, the model fails to predict the
asymmetric profile of DNS at the highest rotation number,
Ro=1.5, yielding a velocity distribution similar to parabolic
laminar one.

The three normal components of Reynolds stress, u2, v2,
w2 and the shear stress uv are presented in Figs. 4 to 7 at
the same condition as for the mean velocity profile in Fig. 3.
The overall tendency shown by the results of DNS is that
the Reynolds stresses are reduced on the suction side and
increased on the pressure side as a result of the imposed sys-
tem rotation. The computation by second-moment closure
shows the similar tendency as DNS for 0≤Ro≤0.5. How-
ever, as was the case in the mean velocity profile, the agree-
ment with DNS becomes worse at the highest Ro shown here.
All Reynolds stress components nearly disappear at Ro=1.5,
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Fig.5: Reynolds Stress v2 for Re=5800, Ro=0∼0.50 and
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which corresponds to the laminar-like mean velocity profile.

Effect of System Rotation
The cause for the failure of prediction at highest rotation

number is now considered. In general, it is difficult to pin-
point a part of the turbulence model which is responsible for
the discrepancy, because in such a non-linear equation sys-
tem any tiny alternation in a single term may result in the
change in the overall result. Among some candidates, the dis-
sipation rate tensor is scrutinized in the present study. This
is in accordance with the proposal by Jongen et al. (1998)
who introduced an anisotropy effect of dissipation tensor to
an explicit algebraic stress model. Here, the modification is
made based on more phenomenological observation.

The basis in this study is Taylor-Proudman theorem,
namely, the flow does not change in the direction parallel
to the rotation axis when the system rotates at very high rate.
Since the channel rotates about the spanwise axis, the theo-
rem can be formulated as:

∂ui

∂z
� 0. (20)

Owing to Eq. (20), vortex filaments in the flow field are ex-
pected to align parallel to the z-axis in the case of high ro-
tation. It is natural to consider that this alignment occurs
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Fig.6: Reynolds Stress w2 for Re=5800, Ro=0∼0.50 and
Re=5000, Ro=1.50

in every scale of turbulence, including the dissipation length
scale. Hence, in the case of high rotation,

ε33 < ε11, ε22 (21)

may be induced.
As mentioned in the previous section, LS model treats the

dissipation term together with the slow part of redistribu-
tion process, cf. Eq. (4). The basic concept of this treatment
may be interpreted as the separation of dissipation term into
isotropy part and anisotropy part, namely:

εij =
2
3
εδij + φ(ε)ij (22)

The anisotropy part represents the wall proximity effects and
hence persists regardless of system rotation. Therefore, to
take into account the effect of system rotation, an additional
anisotropy part is necessary, i.e.:

εij =
2
3
εδij + φ(ε)ij + φR

(ε)ij (23)

The third term on the right hand side represents the influence
of system rotation on the individual dissipation-rate tensor
component. The amplitude of φR

(ε)ij is to be estimated by,
e.g., using available DNS data set.
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The evaluation based on DNS data of Andersson (1993)
and Lamballais et al. (1996) has been undertaken as follows:
First, the anisotropy part of the dissipation tensor in Eq. (22)
was calculated for the case without system rotation by sub-
tracting the isotropic part (2/3)εδij from εij . The compar-
ison between individual components of φ(ε)ij indicated that
there is indeed strong anisotropy in the dissipation rate ten-
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Fig.9: Optimization of the model function f (Ro) for
Re=5000, Ro=1.50
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Fig.10: Determination of the model function fR.

sor, with φ(ε)22 being negative in the region close to the
wall, which is explained by the wall asymptotic behavior.
Second, under the system rotation, the additional anisotropy
term φR

(ε)ij was calculated by rearranging Eq. (23):

φR
(ε)ij = ε′ij −

2
3
ε′δij − ε′

φ(ε)ij

ε
. (24)

It should be noted that the terms on the right hand side are
distinguished by ′ from their value in stationary system. Be-
cause the two anisotropic parts in Eq. (23) can not be divided
from each other at this stage, it is assumed that the ratio of
the “stationary” anisotropy part to the isotropy part, φ(ε)ij/ε,
stays constant regardless of the system rotation. The distribu-
tion of the individual terms is shown in Fig. 8 for the rotating
case at Ro=0.5. As expected, φR

(ε)33 has negative contribution
throughout the channel cross section, which supports the ar-
gument shown by Eq. (21).

Correction Based on Rotation Number
Based on the above-mentioned investigation, a modifica-

tion to the dissipation tensor of Reynolds stress equation is
considered. There are several choices in strategy for reduc-
ing ε33 on the rotating system. After some trials, it is found
that the formation below provides satisfactory improvement
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to the original model,

φR
(ε)ij = −2

3
fRε δi3δ3j , (25)

where fR is a function that increases with the increasing Ro.
It should be noted that Eq. (25) is not applicable to system
rotation about an arbitrary axis, but only for the present case
where the axis of rotation is parallel to z-direction. Besides,
this formulation sensitizes the dissipation rate to the system

rotation regardless of the local quantity like mean shear rate
or vorticity.

The relationship between fR and Ro has been investigated
with regard to the prediction of w2 component at Ro=1.5 as
shown in Fig. 9. Based on the comparison with DNS by Lam-
ballais et al. (1996), the value of fR at Ro=1.5 has been deter-
mined to 0.35. The analogous investigations are performed
for a wider range of Ro and two different Reynolds numbers,
and a functional relationship between fR and Ro has been
specified, cf. Fig. 10. The proposed form of fR is:

fR = −0.0503Ro2 + 0.307Ro, for 0 ≤ Ro ≤ 1.5. (26)

The computation by the proposed model formulation is
performed, and the results are shown in Fig. 11. It is indi-
cated that the agreement of the predicted mean velocity as
well as the all Reynolds stress components with the DNS
is remarkably improved. The present results point to the
fact that a small modification to the model equation of w2-
component, that has no direct effect in the two-dimensional
flow, alters the shear stress component through nonlinear in-
teraction between Reynolds stress components, and eventu-
ally changes the mean velocity profile. It should be stressed
that the discussion on the model improvement has been based
on a theorem which is known for long time, and not on a
pure mathematical consideration such as series expansion,
etc. It is also demonstrated that the second-moment closure
modeling is a straightforward and simple way to incorporate
various physics into the engineering flow prediction. The
generalization of the proposed model should be performed
at higher rotation numbers and also in more complex flow
configurations.

CONCLUSION
The computations of fully developed turbulent channel

flow with system rotation are performed by a second-moment
turbulence closure within the RANS framework. The pre-
dictions calculated with the original Launder-Shima model
show good agreement with DNS at rotation numbers of only
up to 0.5. For the improvement of flow computation at higher
Rotation numbers, the modification to the dissipation equa-
tion has been considered. The present study has proposed
an additional term that suppresses ε33 component, i.e., the
dissipation of normal stress component in the direction of
rotation axis. Together with an empirical relationship on the
rotation number, the prediction of fully developed channel
flow at Ro=1.5 has been successfully performed.
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