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ABSTRACT 

The paper presents the formulation to compute numerically the 
unsteady aerodynamic forces on the vibrating annular cascade 
blades in viscid and inviscid flows. The formulation is based on the 
finite volume method. By applying the TVD scheme to the linear 
unsteady calculations, the precise calculation of the peak of 
unsteady aerodynamic forces at the shock wave location like the 
delta function singularity becomes possible without empirical 
constants. As a further feature of the present paper, results of the 
present numerical calculation are compared with those of the 
double linearization theory (DLT), which assumes the inviscid flow 
with small unsteady and steady disturbances but the unsteady 
disturbances are much smaller than the steady disturbances. Since 
DLT requires far less computational resources than the present 
numerical calculations, the validation of DLT is quite important 
from the engineering point of view. Under the conditions of small 
steady disturbances, a good agreement between these two results is 
observed, so that the two codes are cross-validated. The 
comparison also reveals the limitation on the applicability of DLT. 
Also the extension of the method to the viscous flows are to be 
discussed and the numerical results are presented to compare the 
results.

INTRODUCTION

Precise numerical calculation of the unsteady aerodynamic 
forces on the vibrating cascade blades is highly required in relation 
to the flutter in turbomachines. To compute the unsteady inviscid 
flows and predict the unsteady aerodynamic forces on the vibrating 
cascade blades, there are two models, i.e., the linear (Hall, 1993), 
(Yamasaki, 2000) and non-linear unsteady aerodynamic models. 
The non-linear unsteady model requires a large amount of 
computational resources compared with the linear model (He, 
1993) due to the time accurate calculation of the non-linear Euler 
equations. The linear unsteady model requires far less 
computational resources since it does not solve the non-linear Euler 
equations but solves the linearized Euler equations for the complex 
amplitude following the solution of the steady (time mean) Euler 
equations for the steady aerodynamic forces. In the flutter analysis 
of the cascade blades, the linear unsteady calculation is adequate 
because the aim of the analysis is not to calculate unsteady flows 
under deep flutter conditions of limit-cycle states but to predict the 
conditions susceptible to flutter by assuming small vibration 
amplitudes.

The authors' research group has developed the numerical method 
to calculate the linear unsteady flow field including shock waves 
with high accuracy using TVD scheme, and applied it to the 
two-dimensional supersonic through-flow fan blades in the inviscid 
unsteady supersonic flow to show the effectiveness of the method 

(Yamasaki, 2000). In extending the code to the three-dimensional 
annular geometry, we take advantage of using the rotating 
coordinate system version of UPACS code (Yamane, 2001)  
(Takaki, 2001)  released for general use in 2000 by National 
Aerospace Laboratory (NAL), Japan. The steady or time-mean 
flow field is directly calculated by the UPACS code, and the linear 
unsteady field is calculated by the newly developed code which is  
developed from UPACS.  The numerical methodology used in the 
linear unsteady calculation of the 2-D vibrating supersonic 
through-flow fan blades (Yamasaki, 2000)  was the finite 
difference method and the non-MUSCL type. Following the 
numerical methodology used in UPACS, we reconstruct the linear 
unsteady formulation using the finite volume method, the MUSCL 
type, and the Cartesian coordinate  (not the cylindrical coordinate). 
As a result especially the adoption of the Cartesian coordinate 
simplifies the formulation and coding, and the much part of the 
routines are developed quite easily from UPACS. 

By the way, as a special technique to calculate unsteady 
aerodynamic forces on the vibrating blades under steady loadings 
the so-called double linearization theory (DLT) developed by the 
authors' research group is available. DLT is valid under the 
assumption that the steady and unsteady disturbances are small, and 
at the same time the unsteady disturbances are much smaller than 
the steady disturbances. It has been applied to various flow speed 
regimes and various geometrical configurations successfully, e.g., 
(Li, 1990), (Hanada, 1996). The crucial advantage of using DLT 
resides in that much smaller computational resources are required 
than the method based on the computational fluid dynamics (CFD). 
DLT program gives the 3-D unsteady pressure field in less than one 
second on current PCs. Since DLT assumes small steady 
disturbances, the present linear unsteady calculation based on CFD, 
which is free from the assumption of small steady disturbances, can 
be used for validation of DLT, too. 

In the present paper, the CFD formulation using TVD and 
MUSCL, and the numerical results of linear unsteady aerodynamic 
forces on vibrating annular cascade blades, are presented. The 
present CFD results are compared with the DLT results, and the 
cross-validation of both methods as well as the limitation of the 
applicability of DLT are to be discussed. 

NUMERICAL MODEL AND FORMULATION 

Fundamental Equations

In the present paper, a single row of annular rotating blades as 
shown in Fig.1 is considered and the effects of the adjacent blade 
rows downstream and upstream are assumed to be negligible. 
Cascade blades are assumed to vibrate harmonically in 
infinitesimally small amplitude with a constant angular frequency 
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 and a uniform interblade phase angle 2 . Tip clearances are 
neglected. The hub and casing radii are assumed to be uniform in 
the present paper, but this assumption is not essential in the 
formulation. Fluid is the viscous or inviscid air ideal gas with the 
constant specific heat. Since the finite volume formulation is 
employed, the fundamental equation is satisfied in the control 
volumes. The rotating coordinate system which rotates at an 
angular velocity of  with respect to the inertial coordinate system. 
The Navies-Stokes (N.S.) equations which govern the flow field at 
the position is given in the integral form in the rotating coordinate 
system. 
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Further,  is the fluid density, , ,u v wu  is the relative 
speed of flow, e

r
 is the total energy per unit volume in the rotating 

coordinate system, p  is the pressure,  the specific heat ratio, I
is the rothalpy in the rotating coordinate system corresponding to 
the enthalpy in the inertial coordinate system. f

1
and f

2
 are the 

additional external forces of the Coriolis and centrifugal forces, 
respectively, due to the rotating coordinate system fixed to the 
rotating blades in use. dA  and dV  denote respectively the control 
surface and volume elements for integrals. The pressure p  and the 
total energy per unit volume in the rotating coordinate system e

rare related by the equation, 
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Fig. 1 Computational model and coordinate systems 

Linear Unsteady N-S Equations

Next, the basic equation (1) is linearized under the assumption 
that the vibration amplitude is small enough so that the unsteady 
disturbances are small compared with the steady disturbances (Hall, 
1993). Let us denote the time mean position of the blade by the 

intermediate coordinate system , , ,x y z t . In this intermediate 

coordinate system, the vibrating blades are assumed to be fixed. 
The x , y  and z  components of the small displacement 

amplitude of the blade are given respectively by , , i tx x y z e ,

, , i ty x y z e  and , , i tz x y z e  . Then the coordinate 

transform of the physical coordinate (the rotating coordinate system 
fixed to the rotor) and the intermediate coordinate systems are 
given by 

( , , )

( , , )

( , , )

i tx x x x y z e

i ty y y x y z e

i tz z z x y z e

t t

                              (3) 

In the following formulations, the superscripts x  and x  denote 
the steady or time-mean part and the complex amplitude of the time 
fluctuating part, respectively. 

Correspondingly, the flow field Q  can be given by the 
superposition of the time-mean, i.e., steady flow field Q  and the 
first order perturbed flow field i teQ  due to vibration of the 
cascade blades of harmonic time dependence with a small 
amplitude. By retaining up to the first order terms, we obtain 
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Substituting Eq.(3) into Eq.(1) and retaining up to the first order 
terms, we can decompose it into the steady part 
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Here dS  and dV  denote the complex amplitudes of time-varying 
surface and volume elements, respectively, for the integration. In 
Eq.(8), the terms 

,
b b

U U
b b

F Q n u                                                                       (9) 

denote the additional flux due to the effect of displacement of the 
cell boundary surface  at the velocity 

b
u .Here dS  and dV  denote 

the complex amplitudes of time-varying surface and volume 
elements, respectively, for the integration. In Eq.(6), the terms 

,
b b

U U
b b

F Q n u                       (10) 

denote the additional flux due to the effect of displacement of the 
cell boundary surface  at the velocity 

b
u .

Boundary Conditions

As the inflow and outflow boundary conditions, the 
non-reflecting boundary conditions which take into account the 
wave components are used. For the steady disturbances, the 
boundary conditions are formulated in terms of the Riemann 
invariants following the UPACS code, and for the unsteady 
disturbances, the boundary conditions are implemented following 
the unsteady 1-D formulation by Giles (Giles, 1990). 

The slip boundary conditions which imply the inviscid flow 
moves smoothly on the blade surface are given by 

0
rel

u n                                                            (11) 

Or the non-slip boundary conditions for the viscous flows given by 

0
rel

u

are used.  Here 

rel blade
u u u                                                      (12) 

and
blade

u  and 
rel

u  denote respectively the velocity of the blade 
surface and the relative velocity of the flow with respect to the 
blade surface. By retaining the terms up the first order, Eq. (11) is 
reduced to 

0u n                                                              (13) 

for steady components, and 

blade
u n u n u n                                              (14) 

for unsteady components. For the hub and casing walls which do 
not vibrate, also the slip conditions are applied. 

In the present linear unsteady calculation, a single passage of the 
annular cascade blades is to be calculated by applying the 
periodicity in the circumferential direction. Thus for the 
circumferential boundaries, the periodical conditions 

( , 2 , ) ( , , )r N z r zQ Q                                 (15) 

for steady components, and 

2( , 2 , ) ( , , ) ir N z r z eQ Q                        (16) 

for unsteady components, are satisfied. 

Details of Numerical Calculation

Since the finite volume formulation is used, the straight-forward 
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calculation on the physical intermediate Cartesian coordinate in 
stead of the numerical coordinate is executed following UPACS, 
released for general use in 2000 by National Aerospace Laboratory 
(NAL), Japan. In the time integration, the matrix-free Gauss-Seidel 
method for the steady calculations, and the Runge-Kutta-3rd 
method for the unsteady calculations, are used. In the evaluation of 
the volumes or the surface areas, the conventional method is used 
following UPACS for the steady calculation. This procedure is 
extended to evaluate the perturbation of the volumes or the surface 
areas by taking the linear unsteady amplitude of the volume and 
surface area. The evaluation of the convective terms, the MUSCL 
formulation, and the evaluation of the eigen-vectors follow the 
method used in UPACS.  

As for the unsteady calculation procedures, the TVD scheme 
initially applied to the non-MUSCL formulation and the finite 
difference method (Yamasaki, 2000) is extended to the MUSCL 
formulation and the finite volume method. 

The implementation of the MUSCL formulation and the TVD 
scheme in the linear unsteady calculations are to be outlined next. 
In MUSCL method, the distribution of the physical properties in the 
grid cells are approximated by the piecewise constant, first-, or 
second-order polynomial distribution. 

Fig.  2   Grid points 

By using the grid cell width  given in Fig. 2,  the physical 

properties Q are given by 
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In the present linear unsteady calculations, 1/ 3  (third-order
accurate) is adopted. The TVD scheme is applied to limit 

1/ 2
'
i

Q and
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'
i

Q  by using the cminmod limiter, which is the 

extension of the minmod limiter for the non-complex numbers,
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Here real( )x imag( )x and cmplx( , )x y  denote the real part,

imaginary part, and complex number conversion, respectively. 
The vibration displacement vector can be given arbitrary in space 

as far as the specified displacement on the blade surface is satisfied. 
Details on the vibration displacement vector are omitted here due to 
the limited space of the paper. The calculation is implemented using 
non-dimensional numbers following the implementation in UPACS. 
The numerical grid points are generated by the Gridgen software by 
Pointwise Inc.. 

RESULTS AND DISCUSSION 
Euler Calculation Results and Their Comparison with DLT 

In the present paper, the unsteady aerodynamic forces of the 
rotating annular blades are calculated by using the numerical 
methods based on the computational fluid dynamics (CFD) 
outlined so far, and are discussed mainly in conjunction with the 
comparison with the double linearization theory (DLT). We should 
note again here that in DLT, the steady disturbances are assumed to 
be small, while, no such assumption is required, i.e., the steady 
disturbances may remain finite, in the present CFD formulation. 

In the following calculations, the number of blades is fixed to 
60N , the hub/casing diameter ratio 0.7h , and the 

non-dimensional axial chord length using the casing radius 

0.2
a

C . Furthermore, the non-dimensional rotating speed is 

fixed to 0.197 , the non-dimensional angular frequency 
0.04 for the present cases with the subsonic axial velocity. 

The blade geometrical profile, the time-mean angle of attack 

,the time-mean inflow axial Mach number M
a

, and the 

interblade phase angle 2 are varied in the following 
calculations. Here, the non-dimensional quantities are 
non-dimensionalized using the casing radius, the stagnation speed 
of sound of the main flow, and the stagnation density of the main 
flow. Only the angular, i.e., torsional, vibration is considered, and 
the elastic axis is at the mid-chord in all calculations. The number 
of the grid points are,  21 in the spanwise (radial) direction,  21 in 
the circumferential direction, 141 in the axial direction of the 
annular duct, and 61 axial grid points are included in the bladed part 
of the annular duct for the inviscid calculations.  

The steady and unsteady pressures shown below are both 

non-dimensionalized by 
2
/2

s s
c .The linear unsteady pressure is 

that per the vibrating rotating amplitude of one radian at the tip. 

Here  
s

c and
s

denote respectively the speed of sound and 

density at the stagnation condition of the main flow. Also the radial 
and axial positions are non-dimensionalized by the casing radius. In 
the figures, LT denotes the linear theory for the steady calculations, 
DLT denotes the double linearization theory for unsteady 
calculations, and CFD denotes the present linear unsteady 
calculation based on CFD. 

Cascade blades with a subsonic relative flow

At first, let us consider the cascade blades with a small angle of 
attack of 2 degrees, no camber and no thickness, placed in an 

inviscid subsonic flow with the axial Mach number of 0.4
a

M ,
and undergoing the torsional vibration. Note that the relative flow 
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around the blades is subsonic everywhere along the span. Figure 3 
shows the non-dimensional steady pressure distributions by the 
present non-linear calculation based on the computational fluid 
dynamics (CFD) and by the linear theory based on the singularity 
method which is the steady part of the double linearization theory 
(DLT) (Namba, 1972). Figure 4 shows the non-dimensional linear 
unsteady pressure distributions at the interblade phase angle of 
2 90 degrees, by the present calculation based on CFD and 
by the calculation based on DLT (Li,1990). The horizontal axes in 
both figures are the position on the blade non-dimensionalized by 
using the outer casing radius of the double annular duct. 
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Fig. 3  Steady pressure difference distribution. AOA = 2 deg. 
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Fig. 4   Unsteady pressure difference distribution. AOA = 2 deg. 
parabolic blade with no camber and no thickness, 2 =90deg., 

=0.04.

Since the steady disturbance is small,  little difference is observed 
between the present calculation and DLT in the steady and 
unsteady pressure distributions as is shown in Figs 3 and 4 

respectively. Due to the limited space of the paper, the figures are 
omitted, but it is confirmed, for every interblade phase angles, a 
good agreement is observed between the present calculation based 
on CFD and the calculation based on DLT. 

Parameter: Angle of Attack
Figure 5 shows the unsteady pressure difference on the airfoil at 

the various angle of attack from 2 degrees to 8 degrees. The camber 
ratio and the thickness ratio are fixed to 3% and 3%, respectively. 
The interblade phase angle is also fixed to 90 degrees. The Euler 
calculations and the DLT results show good agreement as much as 
the angle of attack of 8 degrees. Figure 6 shows the 
non-dimensional spanwise aerodynamic work of the blade at 
various angle of attack. In the DLT results, the effect of the angle of 
attack on the aerodynamic work is linear, and it is found its effect is 
small as is  seen in Fig. 6. The Euler calculations, on the other hand, 
show the relatively large dependence on the angle of attack. At the 
present condition, it is found that the larger the angle of attack , the 
more close the Euler calculation and the DLT results, but this 
tendency should not be the general one. 
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Fig.5 Unsteady pressure difference distribution. AOA = 2,4,5,6,8 
deg. parabolic blade with 3% camber and 3% thickness, 
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Fig.6 Unsteady spanwise aerodynamic work along spanwise 
direction. AOA = 2,4,5,6,8 deg. (parabolic blade with 3% camber 
and 3% thickness, 2 =90deg., =0.04)

Parameter : IBPA (Inter Blade Phase Angles)

Figure 7 shows the spanwise aerodynamic work for various 
interblade phase angle. Since the imaginary part of the moment 
corresponds to the aerodynamic work, the aerodynamic work 
becomes small at the interblade phase angles of 0 and 180 degrees. 
Figure 8 shows the total aerodynamic work for various interblade 
phase angle. Note the total aerodynamic work is the integration of 
the spanwise  aerodynamic work shown in Fig. 7. Also one should 
note that the aerodynamic work for the pure torsional  vibration as 
is in the paper, aerodynamic work is closely related to the 
imaginary part of the aerodynamic moment, so the tendency of the 
unsteady pressure and  aerodynamic work on parameters may 
different. The DLT prediction gives about 0.75 times smaller value 
compared with the Euler calculations. This is due to the difference 
in the handling of the boundary conditions, and in the assumption 
on the effect of the steady disturbance on the unsteady disturbances, 
in the assumption on the steady disturbance etc. More specifically, 
the handling of the boundary conditions refers the followings: In 
the DLT formulation, the uniform axial Mach number and the 
pressure are stipulated upstream. On the other hand, in the Euler 
calculations, the upstream Mach number is determined so that the 
pressure condition at the downstream boundary is satisfied. 
Author’s calculation (Nagasaki, 2003) indicates that the difference 
of the DLT prediction and the Euler results becomes smaller when 
the stagger angle is smaller. 
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Fig. 7 Unsteady spanwise aerodynamic work. (parabolic blade with 
3% camber and 3% thickness, 2 =0~360deg., =0.04)
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Fig.8 Unsteady total aerodynamic work. (parabolic blade with 3% 
camber and 3% thickness, 2 =0~360deg., =0.04) 

Navier-Stokes Calculation Results and Ther Comparison with 
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Fig.9 Amplitude of unsteady torsional moment at various span 
section. (flat plate with no camber and no thickness, 2 =90deg.,

=0.04)
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Fig.10 Phase of unsteady torsional moment at various span section. 

(flat plate at the angle of attack of 2 degrees with no camber and no 
thickness, 2 =90deg., =0.04)

At last the linear Euler and Navier-Stokes calculations are 
compared. Figure 9 and 10 show the amplitude and phase of the 
unsteady torsional moment at various span section  for the flat plate 
blade at the angle of attack of 2 degrees with no camber and no 
thickness. Because the effects of viscosity are large near the wall, 
the difference between the Euler and Navier-Stokes calculations 
becomes more conspicuous near the hub and casing. The 
Navier-Stokes calculations predict smaller moment  than the Euler 
calculations, but their difference is not so large. As for the total 
non-dimensional aerodynamic work is concerned, 

5

Euler
5.5 10W  , 

5

NS
4.9 10W  and 

5

DLT
4.5 10W

are obtained. As far as the Mach number is small and the steady 
disturbances are small so that no separation is present, the Euler 
calculations as well as the DLT  calculations give rise to the 
qualitatively sufficient  predictions correspondent with the 
Navier-Stokes calculations.  

CONCLUSION
In the present paper, the model of a single row of annular rotating 

cascade blades is analyzed by the computational fluid dynamics 
(CFD). The linear unsteady aerodynamic flows around the 
vibrating blades which should be superimposed on the steady flow 
are calculated. In the steady aerodynamic calculations, the 
non-linear Euler or Navier-Stokes equations are solved, and in the 
linear unsteady aerodynamic calculations, the linear unsteady Euler 
or Navier-Stokes equations which determine the magnitude and 
phase of the unsteady components are solved, by using the finite 
volume method and the MUSCL formulation. Also the TVD 
scheme which is known to suppress the oscillation around the 
shock waves and to have few parameters determined empirically 
has successfully applied. The main conclusions obtained are as 
follows:

- When the steady disturbances are small and the relative flow is 
subsonic, the results of the present method based on Euler 
equations correspond well with those of the double 
linearization theory (DLT). So the present code based on the 
the Euler equations and the DLT codes are cross-validated 
with each other. The dependence of the aerodynamic forces on 
the interblade phase angle shows the same tendency between 
the Euler calculations and DLT. 

- When the relative flow is subsonic but the steady disturbance 
is large, the results of the present method based on CFD show 
difference from the results of the linear theory in the steady 
flow field. The Euler calculations and the DLT results show 
good agreement as much as the angle of attack of 8 degrees. In 
the DLT results, the effect of the angle of attack on the 
aerodynamic work is linear, and it is found its effect is small. 
The Euler calculations, on the other hand, show the relatively 
large dependence on the angle of attack. 

- As far as the axial Mach number is low and the steady 
disturbances are low, the numerical results by the 
Navier-Stokes equations agree well with the numerical results 
by the Euler equations except near the side wall where the 
small difference is observed. Thus the effect of viscosity is 
relatively small for such  low Mach number and low steady 
disturbance flows. Alternatively the DLT also can predict the 
low Mach number and low steady unsteady disturbance flows.    
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