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ABSTRACT 
This paper presents an analytical study of radial flow 

redistribution in a high speed compressor stage with axisymmetric 
tip clearance.  The flow is assumed to be inviscid and compressible.  
The stage is modeled as an actuator disc and the analysis is carried 
out in the meridional plane.  Upon going through the stage, the 
radially uniform upstream flow splits into the tip clearance flow 
and the passage stream.  The tip clearance flow is modeled as a jet 
driven by blade loading, or the pressure difference between the 
pressure and suction sides.  Thus, the trajectory of the leakage flow 
is calculated from kinematics. Then the mass fraction of each 
stream and the strength of the shear layer between the two are found 
as functions of compressor parameters.  The model takes into 
consideration the detached shock that occurs in the rotor passage.  
This shock model is used to calculate the change in flow variables. 
 
NOMENCLATURE 
C absolute flow velocity 
c axial blade chord; component of absolute flow velocity 
Cl′ lift coefficient per unit span 
Cp pressure coefficient 
H total enthalpy; annulus height 
h enthalpy 
i axial direction 
k radial direction 
M Mach number 
p pressure 
Q strength of shear layer 
q nondimensional vorticity strength 
s blade pitch 
t radial tip clearance 
U compressor rotational speed at the mean radius 
W relative flow velocity 
x axial direction 
y tangential direction 
z radial direction 
ZW Zweifel coefficient 
α absolute flow angle 
β relative flow angle 
βm mean flow angle 
χ blade dirction angle 
γ specific heat ratio 
∆ thickness of underturned layer 

φ flow coefficient 
λ nondimesional mass fraction of underturned flow 
θ degree of underturning 
ρ density 
ω angular velocity of rotor shaft rotation 
ωy vorticity of meridional flow 
ψ meridional stream function 
 
Subscripts 
ps pressure side 
r relative component 
ss suction side 
t stagnation condition 
−∞ far upstream 
0 IGV inlet 
1 rotor inlet 
2 stator inlet 
3 stator exit 
+∞ far downstream  
⊥  meridional component 
 
Superscripts 
– flow which has crossed compressor rotor blades 
+ flow which was underturned due to the rotor tip gap  
 
INTRODUCTION 

Tip clearance flow refers to the flow that leaks through the gap 
between blade tip and the endwall.  Various authors have 
investigated the effects of such a flow on the performance of axial 
turbomachinery.  As the tip clearance increases, the pressure rise 
across the compressor decreases along with its efficiency.  Also, the 
stalling flow coefficient increases.  These trends can be seen in both 
low speed and high speed machines (MacDougal, 1988; Freeman, 
1985).  Various methods have been proposed to analyze flows and 
losses associated with the tip clearance.  Rains (1954) first 
proposed the “jet” model, and suggested that the flow is driven by 
the pressure difference between the pressure side and the suction 
side before rolling up into a vortex.  Losses were assumed to arise 
from the dissipation of some of the kinetic energy of the flow.  This 
model requires experimental data to determine the vortex trajectory, 
and it does not consider the effects of such flow on the rest of the 
passage flow.   Lakshminarayana (1970) suggested the idea of 
“retained lift” in which a portion of the blade loading is retained in 
the clearance flow. One weakness of the model is its inability to 
predict the amount of lift retained, or the strength of the tip vortex.  
Chen et al. (1990) has proposed a similarity analysis based on 
vorticity dynamics and accurately predicted the trajectory of the tip  
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Fig. 1 Schematic view of a compressor stage 
 
vortex. Song & Martinez-Sanchez (1997) proposed an alternative 
analytical model that solved for the flow associated with the tip 
clearance coupled with the rest of the passage flow in a turbine.  
The model focused on the interaction between the tip clearance 
flow and passage stream.  Its predictions were found to compare 
well against Chen’s prediction and experimental data.  Increasingly, 
investigators are turning to CFD to better calculate tip clearance 
flows.  Hah (1986), Adamczyk et al. (1989), and Crook (1989) fall 
into this category. 

Much research on tip clearance flows in high speed machines 
has also been done.  Suder et al. (1996) studied high-speed tip 
clearance flows both experimentally and computationally.  Also 
Chima (1998) and Gerolymos et al. (1999) computed tip clearance 
flows in high speed machines and compared their CFD results with 
experimental measurements.  However an analytical model for 
compressible flow response to tip clearance is still lacking.  
Therefore, the objective of this research is to develop a simple 
model to predict the radial redistribution of flow caused by rotor tip 
clearance in high speed compressors. 
 
MODEL DESCRIPSTIONS 

The modeling approach is similar to that of Song & 
Martinez-Sanchez (1997).  Analysis is axisymmetric and 
two-dimensional in the meridional plane.  This model uses an 
actuator disk, and, thus the blade to blade details are ignored.  Upon 
going through the actuator disc, the radially uniform upstream flow 
splits into two streams due to tip clearance. Stream “+” is 
associated with the rotor tip clearance, and stream “–” is called the 
main passage flow.  The model assumes the flow to be inviscid and 
compressible without area change.  The compressor geometry is 
assumed to be two dimensional at the mean radius values.  The flow 
is assumed to follow the blades perfectly, and blockage and 
deviation are not accounted for in this model.  It should be 
mentioned here that the focus of this analysis is not on loss but on 
the overall, inviscid flow kinematics. 

The actuator disc in this study consists of an IGV row, a rotor 
blade row, and a stator blade row (Fig. 1).  The IGV and the stator 
blade rows have full span blades while the rotor has partial span 
blades.  Axial, tangential, and radial directions are denoted by x, y, 
and z, respectively.  Upstream of IGV is referred to as Station 0.  
Inlet to the rotor is referred to as Station 1, and the rotor exit is 
called Station 2.  Downstream of the stator row is called Station 3.  
Far downstream is referred to as +∞.  The compressor’s rotational 
speed, absolute velocity, and relative velocity are U, C, W, 
respectively. α is the absolute flow angle, and β is the relative flow 
angle. 
 
Tip clearance analysis 

Martinez-Sanchez (1990) developed an incompressible inviscid 
turbine tip clearance flow model whose predictions agreed with the 
theory and data of Chen (1991).  As proposed by Rains (1954), the 
tip clearance flow is modeled as a jet driven by the pressure 
difference between the pressure and suction sides.  This jet then 
collides with an equal amount of passage flow before rolling up into 
a vortex.  Consequently, this tip vortex forms a layer that is 
underturned relative to the passage flow.  This turbine tip clearance 
model has been modified for compressors (Roh, 1997).  Both 
turbine and compressor models assume incompressible flow;  

W

Wjet

Wpass

 
Fig. 2 The tip clearance flow model of Martinez Sanchez (1990) 

 
therefore, they are valid only for low speed flows.  However, Chima 
(1998) showed that the tip clearance flow in compressible flow 
regimes could be predicted by incompressible models.  Therefore, 
Roh’s tip clearance flow model is adopted in this study, and the 
model’s details are given in the Appendix. 
 
Blade scale analysis 

For compressible flows, the momentum equation can be written 
as 

 
 0=×+∇ CHt

rrω     (1) 
 

where tH  is the stagnation enthalpy defined as 2/2ChHt += , 

ωr  the vorticity, and C
r

 the absolute velocity. 
Also, due to the axisymmetric flow assumption ( )0/ =∂∂ y , 

the above equation reduces to 
 
 0=∇⋅ ⊥⊥ HC
r

    (2) 
 

where zx ckciC
rrr

+=⊥  is the meridional velocity and 

2/2
yt cHH −=⊥

 is the meridional stagnation enthalpy. 

The compressible form of continuity equation is 
 

0)( =⋅∇ ⊥C
r

ρ     (3) 
 

and continuity is satisfied by introducing a stream function 
),( zxψ  for the meridional flow as 
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At the rotor exit, the flow has split into two streams.  For the 

passage stream (Stream “–”), the tangential velocities at the rotor 
and stator exit are, respectively 

 

222 tan β−− −= xy cUc    (5) 

 

333 tanα−− = xy cc     (6) 

 
Thus, the enthalpy rise for the passage stream is 
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where ρ3 is the density downstream of the stator. 

For the underturned stream (Stream “+”), the tip clearance 
analysis predicts its azimuthal velocity to be 
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where βm is the mean flow angle through the rotor and θ is the 
underturning of the Stream “+” relative to the Stream “–”.  Also at 
the stator exit, 

 

333 tanα++ = xy cc     (9) 

 
Thus, the enthalpy rise for the underturned stream is 
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The fourth term on the right-hand side of above equation is 

included to account for the kinetic energy dissipated during the tip 
vortex formation.  Then, the downstream vorticity between the 
underturned and passage stream can be determined as 
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    (11) 

 
To focus on the tip clearance effects, the coordinate system is 

transformed to the streamline coordinate from the z coordinate.  
Then, the equation for ψ becomes 

 
 Upstream ( 0<x ) 02 =∇ ⊥ ψ  
 Downstream ( 0>x ) )(2

tipQ ψψδψ −=∇ ⊥
 (12) 

 
Where ∫ ⊥⊥ −==

j

i

ji
y HHdQ 33ψω is the strength of azimuthal 

vorticity ωy between stream i and j, and δ is Dirac’s delta function. 
The boundary conditions are 
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The strength of vorticities Q in the shear layer is 
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Subsequently, the velocities at various axial locations can be 

determined. At the rotor exit, the axial velocities are 
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where 2
1/ xcQq =  and λ  is the nondimensional mass fraction 

of the underturned stream. 
At the stator exit, the axial velocities are 
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One feature of the actuator disk approximation is that only half 

of the total change visible far downstream of the disk occurs at the 
disk while the other half occurs downstream. Therefore, far 
downstream of the stator, the axial velocities are 
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Substituting for velocities in the equation of the strength of 

vorticities yields a quadratic equation for Q as a function of blade 
geometry, the mass fraction of the underturned stream, and the 
density ratios as shown below. 
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Next, the underturned stream mass fraction  can be 
determined from the given tip clearance as 
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Therefore, λ and q can be obtained if the density ratio in each 

stage is known. 
In most high speed compressors, detached shocks occur in the 

rotor passage at the design point (Cumpsty, 1989), and, thus, rotor 
passage flow is unchoked.  Freeman and Cumpsty (1992) 
developed a detached shock model by considering control volume 
extending from the inlet region to the maximum blade thickness 
location and solved the relation between the maximum blade 
thickness and the exit Mach number.  However, in our model the 
entire blade passage is considered as the control volume (Fig. 3). 

In the direction of blade chord, the continuity and momentum 
equations are conserved.  Also, the relative total enthalpy is 
constant.  Thus, from above relations, the rotor exit relative Mach 
number, Mr2, is easily obtained. 
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Fig. 3 Extended control volume considering entire rotor 

passage 
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where χ is a single blade direction.  Therefore, the density ratio 
across the rotor is easily obtained. 
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In the stator, there is no shock in the flow, and the total enthalpy 

does not change.  Thus, the density ratio across the stator is 
obtained from 
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where M2 is the absolute mach number at rotor exit.  From above 
results, the density ratio across the entire stage, ρ3/ρ1, is 
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Therefore, from the prescribed tip clearance, t/H, the upstream 
stagnation conditions, and the obtained density ratios, above 2 
equations can be solved for q and λ. 
 
Table. 1 Lewis single-stage compressor specifications at the design 

point 

Parameter Value 

Ht /  0.02 

cs /  1.471 

1α  0° 

1β  56.53° 

2α  45.31° 

2β  38.87° 

3α  2.54° 
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Figure 4 Radial distribution of (a) relative axial velocity; (b) 
relative tangential velocity; (c) relative flow angle 

 
MODEL PREDICTIONS 

The test compressor is a Lewis single-stage compressor 
described in Reid and Moore (1978, 1980).  This compressor, called 
Stage 37, consists of rotor and stator.  Table 3.1 shows the 
specifications of this compressor.  Input upstream stagnation 
conditions are Pt1=101.4 kPa and Tt1=288.2 K.  Also, the value of 
upstream Mach number and flow coefficient is 0.661 and 0.453, 
respectively.  The tip clearance value is assumed to be 2 % of the 
annulus height. 

Figs. 4a and 4b show the radial profiles of relative axial and 
tangential velocities at the rotor exit. z/H= 1 is the casing and z/H= 
0 is the hub.  The radially uniform upstream flow has split into two 
streams – the clearance stream and the passage stream.  Due to the 
density increase across the rotor without area variation, the axial 
velocities at station 2 are smaller than those upstream of the rotor.  
Furthermore, relative to the passage stream, the clearance stream 
has a lower axial velocity (Fig. 4a) and a higher tangential velocity 
in the direction opposite to rotation (Fig. 4b).  Thus, the clearance 
flow is underturned, and this can be seen in Fig. 4c that shows the 
radial profile of the relative flow angle at the rotor exit.  The angle 
is defined to be positive in the direction of rotation.  These effects 
are due to the kinematics of the tip clearance flow similar to the 
incompressible case. 

Figure 5 shows the rotor exit flow field predictions from the 
new compressible model (solid line) and Roh’s incompressible 
model (dashed line).  Axial retardation and underturning of the  
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Figure 5 Radial distribution of (a) relative axial velocity; (b) 

relative tangential velocity; (c) relative flow angle predicted by 
compressible and incompressible models 
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clearance flow relative to the passage flow are similar in both cases.  
Since the tip clearance model is used in both models, the flow angle 
(Fig. 5c) and the mass fraction of the underturned stream remain the 
same.  However, the downstream velocity magnitudes are smaller 
for the compressible downstream case due to the density increase 
(Figs. 5a and 5b). 

Next, the prediction’s sensitivity to tip clearance is analyzed.  
Fig. 6 shows a plot of the leakage flow vs. tip clearance for various 
Mach numbers.  As the tip clearance increases, leakage mass flow 
increases proportionally.  Velocity magnitudes and flow angles are 
not significantly affected; only the thickness of the underturned 
layer changes.  Also, as seen in Fig. 6, the Mach number does not 
have much influence on the leakage mass fraction. 
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Figure 6 Leakage mass flow amount vs. tip clearance for the test 

compressor 
 
CONCLUSIONS 

The intent of this study is to gain physical understanding of 
rotor tip clearance effects in high speed compressors, and an 
actuator disc model has been developed to illuminate such effects. 
The following conclusion can be drawn. 

1) In compressible flows, as in incompressible flows, the 
underturned tip clearance flow has axial and tangential 
momentum defects relative to the passage flow. 

2) The tip clearance variation mainly affects the mass 
fraction of the tip clearance, which increases linearly 
with tip clearance. 
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APPENDIX 

This appendix describes Roh’s (1997) compressor tip clearance 
model.  Fig. A1 shows this model schematically. 

 

 
Fig. A1 Geometry of compressor tip vortex roll up (Roh, 1997) 

 
The flow velocities on suction and pressure sides are obtained 

from the Bernoulli equation as 
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Also, for the flow through the tip gap, 
 

ρ
ssps

G

PP
W

−
= 2    (A3) 

 
This gap flow then collide with an equal amount of passage 
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flow (Fig. 2).  Since the flow is assumed to be inviscid, the two 
streams that collide have same total pressure, temperature, and also 
equal static pressures along their contact line. Therefore, these two 
streams must have equal velocity magnitudes, and the line OP 
bisects the angle made by 

psW
r

 and 
jetW
r

. 

Then, 
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where 
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be shown that the degree of underturning of the vortex relative to 
the passage flow can be obtained as 
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and ZW refers to the Zweifel coefficient 
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