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ABSTRACT

The stability theory of rotating stall of compressors is to
help understanding the mechanism of rotating stall in order
to find various ways to extend the stall margin. To tran-
sonic axial flow compressors or fans, there is very few mod-
els to discuss the effect of the presence of a strong in-passage
shocks on the stability. Based on an existing compressible
three-dimensional rotating stall stability model, the effect of
shock is included in the present theory. Some calculations
are carried out and the relevant results are compared with an
experimental data of a transonic stage. In fact, this model
shows that it is very important to include the effect of a
strong in-passage shock in a blade row to the compressor
stability prediction .

Nomenclature

Variables
α axial wave number
β relative flow angle
θ stagger angle of blade row
ρ density
ω angular frequency of disturbance wave
a sound speed
L loss
M Mach number
p pressure
q disturbance velocity of channel flow
rm mean radius
u axial velocity
v circumferential velocity
w radial velocity
W mean flow velocity of channel
Ω Rotor speed
Superscript
a region upstream of shock
b region downstream of shock
j index of unbladed region
k index of bladed region
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Subscript
0 average
m circumferential mode number
n radial mode number
s shock
p acoustic
v vortical or entropic

Introduction

Considerable work was done in the past several decades on
investigating the phenomenon of rotating stall in axial flow
compressors. The overall objective of these theories was to
predict inception conditions and identify the fundamental
mechanism involved.

Takata and Nagano(1970) developed a nonlinear model
to analysis rotating stall, which emphasize the role of the
nonlinear aspects in determining the propagation velocity
and do not identify the fundamental mechanisms that pro-
duce rotating stall. Nenni and Ludwig(1974) extended the
channel flow theory presented by Sears(1955) to include the
effects of more geometrical and aerodynamic parameters of
compressor. The work was soon extended to two dimen-
sional compressible flow case(Ludwig, 1979). Greitzer(1976)
and Moore(1984,1986) presented stability model of com-
pressor in different approach. The model can not only be
used to predict the inception condition of stall and surge
but also to study the non-linear development of stall cells.
The compressible flow stability model of rotating stall in
multi-stage compressors are also investigated based on solv-
ing linearized Euler equations(Feulner, 1994). However, all
of these work are based on the assumption that flow is two-
dimensional. There were some attempts to set up three-
dimensional compressible stability model of compressor in
the previous work. Ludwig(1979) and Nenni developed a
three-dimensional incompressible flow stability model of ro-
tating stall but no any numerical results were presented.
Takata and Nagashima(1985) studied the rotating stall in
three-dimensional blade rows with emphasis on the effect
of non-uniform flow or shear flow on the stall inception.
Sun(1996) developed a three-dimensional compressible sta-
bility model of rotating stall to include the effect of boundary
condition of casing treatment.

For advanced gas turbine engines, transonic axial flow
compressors or fans have been widely used. Compared to
subsonic compressors, transonic compressors face more se-
vere restrictions on the stall margin. However, there is little
knowledge of stability prediction for transonic compressors.
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In fact, the existing compressible stability models of rotating
stall mainly aim at the stability prediction for subsonic flow.
Therefore, it is still not known that how a strong in-passage
shock in a blade row affects the stability of a compressor.
The complex nature of this issue has thus far resisted rigor-
ous mathematical formulation, but a ”simplified” model has
been undertaken herein based on a modified semi-actuator
disk approach with channel flow. A similar method had
been employed by Adamzyck(1978) and Micklow(1981) on
researching supersonic bending flutter in axial flow compres-
sors.

The present theory is a natural extension of the model
developed by Sun(1996). As all the previous small pertur-
bation theories of rotating stall have been, the blade row
performance data need to be fed into model. At present, the
source of these data could be from experiment or numeri-
cal calculation. In the following sections, this model will be
described in detail and then some numerical results will be
discussed for further understanding the mechanism of rotat-
ing stall in transonic axial flow compressors or fans.

Stability Model

This rotating stall stability model was based on small dis-
turbance assumption. It was developed to investigate the
stability of compressible flow in high-speed multi-stage axial
flow compressors. It was envisaged that the model would
be used for the analysis of the effects of loss of rows and
the existence of shock in supersonic condition. This model
seperates compressors into unbladed regions and bladed re-
gions as shown in Fig.(1). It is also assumed that the the
radius of hub and casing of compressor will keep constant
in each seperated flowfields but will be different with each
other.

Outlet DuctInlet Duct Gap
Blade Rows
Gaps and

j=1 k=1 k=2 k=Nj=2 j=N+1

Fig.1: Multi-Row Axial Flow Compressor

It is unlike some incompressible stability theories, the
mean flow in this theory would vary in different sections. But
it was assumed that mean flow velocity was zero in radial di-
rection. Although the radial main flow was ignored, radial
unsteady velocity would be included in the stability model.
Three dimensional unsteady linearized Euler equations were
used in unbladed region and two dimensional equations in
blade rows. The unsteady flow field is presented by pressure
perturbation, velocity perturbations and density perturba-
tion. Matching conditions would be used to combine solu-
tions together at shock wave, leading edge and trailing edge
of each blade row, then one homogeneous stability equation
could be set up. Further the frequency of the rotating stall
waves could be obtained by solving this equations, which
generally consists of an real part and an imaginary part, i.e.

ω = ωr + iωi (1)

The flow is neutrally stable if ωi = 0, unstable if ωi < 0 and
stable ωi > 0.

Solution in Unbladed Regions

Unbladed Regions comprised inlet duct, gaps between suc-
cessive blade rows and the exit duct. The linearized Euler

equations applied to gaps and ducts are in Cartesian coordi-
nates, which are as follows:
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From Equations.2, it can be shown that fluctuating variables
related to pressure will satisfy the wave equation in the form
of
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(3)
where, Mx and My represent axial and circumferential Mach
number, respectively.

A general method of solving partial derivative equations
is to use a transform or series expansion to eliminate deriva-
tives with respect to independent variables. Assuming the
solution of unsteady Euler equations has a Fourier series form
in the circumferential direction, eiβm, and a complex expo-
nential, eiωt. Where,

βm =
m

rm

ω = ωr + iωi

. Integer m means the circumferential mode number and n

means radial mode number. For radial mode, there are some
discussion in reference(Sun, 1996), in which the radial wave
number is related to boundary condition at hub and casing.
In this paper, hard wall boundary condition was adopted.
Therefore the radial wave number km is (n−1)π

h
, where n is

radial mode number and h is the height from the hub to
tip. Accordingly, the eigenfunction of radial direction can
be written as:

ψ(z) = coskmnz (4)

Unsteady pressure perturbation wave has a form as:

p(x, y, z, t) =

+∞
∑

m=−∞

pmn(x)ψmn(z)ei(ωt+βmy) (5)

Substituting it into Eq.(3) the result is one complex constant
coefficient ordinary derivative equation(ODE) in x for each
mode.
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This can be solved by assuming exponential in x and solving
for the complex exponential constants:

pmn(x) = p̄mne
iαmn(x−xj)

Where α is axial wave number. Substituting the upper form
of solution of pressure into Eq.( 6) yields
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Finally the pressure can be expressed as
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In this expression the two components represent two Rie-
mann sheets of the solution separated by branch cuts arising
from the square root of the complex frequency parameter, ω.
Physically, they mean downward and fore-ward propagating
wave from the plane xj . Imaginary part of ω is damping fac-
tor which determines whether the amplitude will decay or
magnify from plane xj . p̄+j

mn and p̄−j
mn are two unknown co-

efficients which determine the amplitude of the disturbance.

According to velocity splitting theorem, the fluctuating
velocity can be decomposed into acoustic mode related to
pressure variation and vortical mode as follows:

{
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(9)

Similarly, density disturbance is split into acoustic mode and
entropy mode, which are related through energy equation.
The density is represented as follows:
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v (10)

Substituting solution of pressure into Euler equations and
energy equations yields solution of velocity and density in a
very similar form of pressure.
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Solution in Bladed Region

The impact of rotor rows and stator rows were substi-
tuted by three-dimensional semi-actuator disks. This means
that the main flow in the blade rows is treated as one-
dimensional. But there are radial fluctuating velocity com-
ponent and chord wise fluctuating velocity component. So
the two-dimensional unsteady Euler equations describing the

three-dimensional semi-actuator disk are
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For this equations the coordinate is fixed to the blade row
and ξ is along the channel direction. Besides it should be
noted that in the phase change of the wave motion in the
cascade direction must coincide with that in the upstream or
downstream flow. Therefore the solution of the perturbation
waves along the ξ direction should be sought in the form
ei(ωt+βmy). Further, for rotor rows the y-direction of the
coordinate was taken the contrary to rotating direction. The
relationship between blade fixed coordinate y′ and absolute
coordinate y is

y = y
′ − Ωrmt

then the waves in a rotor blade row can be expressed in the
form ei((ω−mΩ)t+βmy′). Using the similar method used in un-
bladed regions the solution can be obtained in the following
form
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In the cases of stator rows rotating speed Ω is set to be 0.

Supersonic Region
For transonic rotor, obviously, the real environments is

very complicated. If the presence of shock was ignored the
solution of last section can be used directly on transonic rotor
with assuming the total pressure loss centralize in the leading
edge. But if the shock waves was considered, one simple
approach to model them is to treat them as a strong normal
in-passage shock. This could be relatively easily modeled
in mathematic. The simplified physical sketch is shown in
Fig.(2). The blade row channel was separated by the normal
shock into two parts, i.e., one supersonic flow field and one
subsonic field. Linearized Euler equations, which are the
same with last section, will govern the two areas. By solving
them respectively two groups of solution could be obtained.
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Fig.2: Shock Wave in Rotor Blade Row

It was shown in last section that there are two axial expo-
nential items of acoustic wave mode in a subsonic flow field,
one downward and one forward from plane xj . To supersonic
flow field the difference is that only downward perturbation
could propagate in it. Therefore, there is only one axial ex-
ponential item of acoustic wave mode. As to vortical wave
mode and entropy wave mode there is no variance. Hence it
is not necessary to write the solution out again. However, it
should be noted that it has 3 unknown variables addition to
the model with the assumption of existence of a strong nor-
mal shock. They are the coefficients of acoustic mode pbmn,
votical mode wvbmn and entropic mode ρvbmn, of perturba-
tion of supersonic area.

Matching Condition

In the solutions obtained in last three sections the coef-
ficients of wave mode are unknown. For each disturbance
mode there are 5 unknowns in the solution of each unbladed
region, 4 unknowns in the solution of each subsonic bladed
regions and 3 unknowns in the solution of supersonic bladed
region. They could be associated by applying conservation
conditions and matching conditions on connected plane, i.e.
shock wave, leading edge and trailing edge of blade rows.

Conservation conditions
A finite volume was selected along the blade row chan-

nel(see Fig.(2)). The laws of unsteady conservation of mass
and energy must be satisfied by the flow of this volume. The
equation of unsteady conservation of mass of subsonic cases
are
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and the equation of unsteady conservation of energy of sub-
sonic cases are
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For supersonic cases the equation of the unsteady conserva-
tion of mass is
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and the equation of unsteady conservation of energy is
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This two equations are the main difference resulted by the
assumption about the in-passage shock. For the first case,
i.e., ignoring the presence of shock, the equations are simpler
than equations for the second case. Detailed deduction of
unsteady equations can be seen in reference(Sun,1996).

Leading Edge of Blade Rows
The assumption applied in this model is that the blade

profile loss is concentrated on the leading edge of blade rows.
Hence, an unsteady total pressure loss equation can be set
up as

h
j
L − hk

L = ξk
s (U juj + V jvj)

+ξk′

s
(Uj)2+(V j)2

2
( vj

V j − tanβk uj

Uj )
(18)

Although the mean flow turns in the lead edge and the
total pressure loss arises there, the momentum in the span
wise direction should be continuous because there is no force
acting in this direction. Since the mass flow is conserved
on the leading edge plane, this condition finally becomes
equivalent to the conservation of the fluctuating velocity in
this direction, i.e.

w
j = w

k (19)

Trailing Edge of Blade Rows
On the trailing edge plane, the conservation of mass flow

and total enthalpy flow are imposed. In principle the outlet
angle from the blade row β2 is generally given as a func-
tion of the inlet flow angle β1 and the span wise position z.
For simplicity it is assumed here that β2 is constant being
independent of β1 and z. Its value is assumed to be equal
to the cascade stagger angle θ. Then the three components
of the velocity, static pressure and density are continuous.
These conditions will result in the following different algebra
equations for a blade row.

The outlet pressure condition is

p
k
c = p

j+1 (20)

The outlet density condition is

ρ
k
c = ρj+1 (21)

The outlet axial velocity condition is

q
k
c cosθ

k = u
j+1 (22)

The outlet circumferential velocity condition is

q
k
c sinθ

k = v
j+1 (23)

The outlet radial velocity condition is

w
k
c = w

j+1 (24)

Matching Condition on Shock Wave
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The semi-actuator theory assumed that all variables had
no variation in the direction vertical to the chord direction.
Therefore the complicated shock waves inside of rotor blade
row were replaced by a normal shock wave for simplicity.
Then the relationship of disturbances can be obtained by
linearizing the well known normal shock wave relationship.

The radial velocity condition on shock wave is

w
k

a = w
k

b (25)

The axial velocity condition on shock wave is

qk
a =

(κ−1)Ma2
b
−2

(κ+1)Ma2
b

qk
b

−
2a0

2
b

(κ+1)Wbρ0
k
b

ρk
b +

2a0
2
b

(κ+1)WbPb
pk

b

(26)

The pressure condition on shock wave is

pk
a = −κ−1

κ+1
pk

b +
2W2

b

κ+1
ρk

b

+
4ρ0

k
b

Wb

κ+1
qk

b

(27)

Inlet and Outlet Conditions of Compressor
Assume that there are no inlet disturbances caused by

entropy and vortex and no reflection, so for the first blade
row,

p̄
+1
mn, ρ̄

+1
mn, v̄

+1
vmn, w̄

+1
vmn = 0 (28)

On the other hand, for the outlet of compressor, it is assumed
that there is no reflection, so

p̄
N
mn = 0 (29)

All equations then were stacked row by row. By use of the
boundary condition a homogeneous system of equations with
homogeneous boundary condition was obtained. The only
thing left is to substitute perturbation solutions of unbladed
area and bladed area into these equations. The final form of
the equation is like









a1 a2 · · · an

b1 b2 · · · bn
...

. . .
. . .

...
l1 l2 · · · ln
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0
0
0
0







(30)

The order of the system of equation depends on the num-
ber of rows and the assumption about the shock. If shock
is passed over the matching condition on shock will be left
out, otherwise the stability equations will have three more
equations and three more unknown coefficients related to the
supersonic region.

In order to get nontrivial solutions from the equations the
determinant of the coefficient matrix must be not equal to
zero. Hence allowable frequency ω should be found out in
complex field to satisfy this requirement. Recall that the
imaginary part of ω will determine whether the flow is stable
or unstable.

Result Discussion

As mentioned in introduction, this stability theory needs
compressor’s performance data, which come from experiment
or numerical calculation. At present, experimental data ap-
pears to be more accurate than numerical calculation, and
in this paper, experimental data was used for this reason.
The next subsection describes briefly the experiment. The
results of the model and some discussion is in the second
subsection.

Performance of One Transonic Stage

1 2 3

Air flow

Fig.3: Sketch of the compressor

The experiment quoted in this paper is by Royce(1982),
and details of the stage could be obtained by Urasek(1972).
Fig.(3) is a sketch of the compressor stage. This stage was de-
signed for a pressure ratio of 1.82 at a flow 20.2 kilograms per
second and a tip speed of 455 meters per second. Table.(1)
shows some design overall parameters and some geometric
data.

Table 1: Design Overall Parameters for Stage

Rotor Total Pressure Ratio 1.863

Stage Total Pressure Ratio 1.820

Rotor Adiabatic Efficiency 0.858

Stage Adiabatic Efficiency 0.822

Flow Coefficient 0.447

RPM 17140

Tip Speed 455.233

Hub-Tip Radius Ratio 0.70

Number of Rotor Blades 48

Number of Stator Blades 62

0.8

0.9

1

1.1
0.32 0.34 0.36 0.38 0.4 0.42

e
ffi

c
ie

n
c
y

33333 4
444444

22
222

0.8

1.2

1.6

2

0.32 0.34 0.36 0.38 0.4 0.42

to
ta

l
p
re

ss
u
re

ra
ti
o

Flow Coefficient

100

33333

3

90

4444444

4

70

22222

2

Fig.4: Sketch of performance of the stage

This compressor was tested over the stable operating flow
range from 50 to 100 percent of design speed. Fig.(4) gives
out the brief performance line of this compressor stage in
form of total pressure ratio and efficiency. The relative ve-
locity of flow in the rotor is supersonic when the rotor rotates
in 100% design rotating speed, and strong in-passage shock
waves exist in the rotor till the compressor goes into stall.
Some weak shock waves, the impact of which on stability
can be ignored, lie in the stator either. In the experiment
the total pressure loss of rotor was measured, but the shock
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wave loss was unable to be measured directly in experiment.
The relationship among total pressure loss coefficient, blade
profile loss coefficient and shock loss coefficient are

Lprofile loss = Ltotal loss − Lshock loss (31)

For the compressor, the total pressure loss of stator is much
less than the loss of rotor, and when the rotor rotates in 100%
design speed the loss of shock would be much larger than
blade profile loss. Therefore the discussion in next subsection
would put focuses on the rotor blade row rather than the
stator blade row. In addition, because the main flow in the
model was assumed to be two-dimensional so it is necessary
to take radial average of the experimental data which were
radially distributed in report(Royce,1982).

Numerical Results

There are two different ways to predict the inception of
stall in a multi blade rows compressor. One way is to build
the stability equations on each row and solve them one by
one to find the most unstable point, and the second way is
to set up the stability equation on the whole compressor and
solve only one system equations. The defect of the first way
is that it is difficult to determine the boundary condition of
inter-blades. The non-reflection condition at downstream of
blade would not be accurate any more. However, this way
is still a good attempt, from which some phenomenon and
discipline could be found. The second way seems to be closer
to the real situation though it also depends on the accuracy
of performance data, such as velocity, loss coefficient, and
so on. The previous description of this model indicates that
if the total pressure loss was assumed to take place just on
the leading edge, then the pressure loss of shock would be
omitted in conservation laws and matching conditions. This
assumption is generally undertaken by most stability the-
ories, so does this paper(See Fig.(5, 6, 7)), moreover, this
paper would try to separate the loss of shock from other
types of losses and discuss its impact on system stability(See
Fig.(8, 9).

All of the following figures would show relative propaga-
tion speed and damping of the disturbance, and the rotor
speed is 100% design speed. Their definitions are as follows
separately

ωr

2mπΩ
,

ωi

2mπΩ

. It is also noted that radial mode number n is set to one,
because when just considering solid wall boundary condition
mode number larger than one has no practical meaning. In
addition, the experimental data was presented over the sta-
ble operating flow range, so it means that the real flow is
stable. In order to get the performance data of a possible
stall’s condition, a little smaller airflow was assumed and was
extrapolated from the near stall point. Therefore, in follow-
ing figures the point with the smallest flow coefficient would
be a possible unstable condition.

Ignoring shock would make matching conditions on shock
be passed over, correspondingly, unsteady equation of con-
servation of mass(Eq.(14)) and energy(Eq.(15))are adopted.

Fig.(5) shows four different circumferential mode number
for the rotor row, which means the stability eqution would
be built on rotor only. From this figure, it could be seen that
the damping reduces while the airflow decreases, and when
the airflow decreases to the near stall condition there is a
more sharp decrease in the damping very close to zero, so it
is possilbe that disturbance wave with circumerential mode
number 4 and 5 would go into rotating stall.
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Fig.5: Disturbance wave in rotor
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Fig.6: Disturbance wave in stator
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Fig.7: Disturbance wave in stage
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Fig(6) is the result built on stator row only. Both of the
propagation speed and damping lines are quite flat with the
decrease of flow coefficient. Actually, the total pressure loss
in the stator is much less than in the rotor. The result of
Fig.(7) is built on the stage, namely, rotor and stator. Only
the line of circumferential mode number 4 is drawn in the
figure. Besides mode number 4 the other mode also had been
calculated, but results are not as resonable as circumferential
mode number 4, such as a negative propagation speed or a
very larger speed than rotative speed.
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Fig.8: Disturbance wave in rotor

The next is to use matching conditions on shock and
unsteady equations of conservation of mass(Eq.(16) and
energy(Eq.(17)) in setting up the stability eqution. Fig.(8)
shows results for rotor, circumferential mode number 4 only.
It is noted that the in-passage shock is assumed to be near
the leading edge of rotor, because there is no any measure-
ment on it in experiment. Comparing Fig.(5) and Fig.(8)
could find that propagation speed of disturbance in the sec-
ond figure is less than the first one, and the same trend lies
in the damping lines. Another difference is that in the first
case the damping is close to zero at the point of the smallest
airflow, while in the second case the damping has been less
than zero at the flow nearly stall. Results in Fig.(9) are simi-
lar with Fig.(7). Both of them were obtained by applying the
model to the whole stage. Comparison between them shows
that the propagation speed of disturbance wave in view of
shock is less than the other, and the trend of damping is
more resonable.
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Fig.9: Disturbance wave in stage

So the first conclusion could be drawn is that circumferen-

tial mode number 4 or 5 are the most possible modes which
might go into rotating stall. The second conclusion is that
comprising the shock in model has a positive impact on re-
sult. This was embodied not only in the result for one blade
row but also the whole stage. Considering shock in model
actually increases the order of coefficient matrix of stability
equations, and it would reduces the blade profile loss coeffi-
cient and its derivative to inlet angle either. It had been em-
phasized by Nenni and Ludwig(1974) in their subsonic model
that the loss coefficient and its derivative to inlet swirl are
the most important factor on stability of compressor. This
point is widely accepted no matter the flow is compressibe or
incompressible. As mentioned previouly, blade profile loss is
obtained by subtracting the shock loss from the total pres-
sure loss. When in-passage shock exists, because the blade
profile loss is much less than shock loss, its derivative to in-
let swirl would become much less than the usual subsonic
condition correspondingly. Though a direct measurment on
shock could not be obtained in expriment, but from the ex-
isting experimental data this is true. The sharp variance of
propagation speed and damping in Fig.(8) and Fig.(9) could
possibly originate from that the slope of blade profile loss
to inlet swirl is not smooth in transonic flow. Anyway, the
correlation between the prediction of theory and experiment
indicates that the model in view of shock is more accurate
and resonable. The third conclusion is that for a multi rows
compressor, the results built on the whole stage is more ac-
curate than results built on rotor only, as is shown in Fig.(8,
9). The existence of stator row would probably increases
the stability of the stage, and another reason is that it is
diffcult to give out an accurate boundary condition between
the blade rows into the model.

Concluding Remarks

The stability theory of rotating stall of compressors is to
help understanding the mechanism of rotating stall in order
to find various ways to extend the stall margin. To transonic
axial flow compressors or fans, there is very few models to
discuss the role of a strong in-passage shock on the stabil-
ity. Based on an existing compressible rotating stall stabil-
ity model, a three-dimensional supersonic stability theory of
rotating stall has been developed to include the effect of in-
passage shock, which is simplified as a normal shock. The
present numerical results show that the model in view of
shock can give an rather reasonable stability prediction, and
the impact of in-passage shock on stability is thought to be
resulted from shock pressure loss, which changes the slope
of total pressure loss to inlet flow angle. More comparisons
between theory and experiment will be done to test the con-
clusion in the future.
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