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ABSTRACT 

Present paper contains a method of solution of 
inverse problem for Navier-Stokes equations for quasi-3D 
flows without any simplification of the problem statement 
and applied to design of turbomachinery bladed rows. 

In the developed method blade surface is 
impermeable and no-slip or any other boundary condition 
compatible with Navier-Stokes equations is applied on the 
blade surface. Solution of inverse problem is determined 
using moving grid, which is re-generated at each step of 
time-marching procedure (variation of flow-rate, impulse 
and energy fluxes due to movement of grid nodes is taken 
into account). Normal speed of face of grid cell adjacent to 
blade surface is determined using given static pressure 
(inverse mode) with the aid of relationships which are the 
elements of Godunov scheme applied for integration of flow 
equations.  

 
INTRODUCTION 

During last two decades a number of emerging 2D 
Euler-based inverse design methods have been developed 
(Meauze, G., 1982, and Demeulenaere, A., et al., 1997). 
However only a few of them can be generalized for 3D 
inverse design.  Thus any new method of solution of 3D 
inverse problem even for Euler equations is an important 
achievement (Dang, Т., et al., 2000). 

The most ambitious problem is solution of 3D 
inverse problem for Navier-Stokes equations. Up to now no 
rigorous solution of inverse problem for Navier-Stokes 
equations exists even for 2D problem. Known methods of 
solution of inverse problem for Navier-Stokes equations 
consist in combination of direct mode (analysis) for Navier-
Stokes equations (de Vito, L., et al., 2002) and inverse mode 
(design) for Euler equations. Another approach to solve 
inverse problem for Navier-Stokes equations consists in 
application of model of permeable wall (Demeulenaere, A., 
et al., 1997). Here, it is worth noting that model of 
permeable wall based on flow-rate conservation requires 
non-zero tangential velocity at the wall, whereas this 
velocity for viscous flow has to be zero. Besides that, 
method (Demeulenaere, A., et al., 1997) demonstrates 
serious problems with convergence in case of transonic 
flows. 

Mentioned combination of direct mode (analysis) for 
Navier-Stokes equations (de Vito, L., et al., 2002) and 
inverse mode (design) for Euler equations is of limited 
application in case of presence of viscous flow separation 
zone at the blade surface, because in the case blade surface 
pressure depends on the shape of separation zone instead of 
blade geometry.  

Present paper contains method of solution of 
inverse problem for Navier-Stokes equations for quasi-3D 
flows, which is free of drawbacks mentioned above. 

Method  is  based  on  V.  Mileshin’s  algorithm  of  
 

 solution of quasi-3D inverse problem for Euler equations 
developed in 1990 (Mileshin, V.I., 1992 and Mileshin, V.I., 
2000). This algorithm can be extended to 3D Euler 
equations. More valuable feature is its applicability to quasi-
3D and 3D Navier-Stokes equations without any 
simplification of the problem statement. 

In the developed method blade surface is 
impermeable and no-slip or any other boundary condition 
compatible with Navier-Stokes equations is applied on the 
blade surface. Solution of inverse problem is determined 
using moving grid, which is re-generated at each step of 
time-marching procedure (variation of flow-rate, impulse 
and energy fluxes due to movement of grid nodes is taken 
into account). Normal speed of face of grid cell adjacent to 
blade surface is determined using given static pressure 
(inverse mode) with the aid of relationships which are the 
elements of Godunov scheme applied for integration of flow 
equations. Cell face adjacent to blade surface is impermeable 
during the movement process. Location of grid nodes 
adjacent to blade surface is determined at each new step of 
time-marching procedure using special algorithm 
maintaining self-stabilization of new blade surface, i.e. 
preventing kinks, saw and so on. 

It is important to note that analysis (direct mode) 
of quasi-3D viscous flows uses the same solution algorithm 
as that of inverse mode solution for quasi-3D problem 
statements correspondingly. 

  
GOVERNING EQUATIONS FOR QUASI-3D 
INVERSE METHOD AND ELEMENTS OF 
NUMERICAL SCHEME 

Quasi-3D flow analysis of bladed cascades on the 
non-cylindrical surface of revolution uses the following 
coordinate system: m the meridional curvilinear abscissa, θ 
the circumferential coordinate. The coordinates m and θ are 
determined from cylindrical coordinates according to the 
formulae: 

 
  dm2 = dz2 + dr2                                 (1) 
 

     θ = θ′ - Ωt                     (2) 
 
Here the angle θ′ is measured in fixed coordinate 

system, and θ - in rotating relative coordinate system 
turning with bladed row with the angular velocity Ω. 
Radius r and variable stream tube thickness b are taken as 
given functions of m. In chosen coordinate system non-
dimensional Navier-Stokes equations can be written in a 
near-conservative form: 
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            Here p is the pressure; ρ the density; wm and wθ 
are the relative velocity components W
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1ε ⋅=  is the internal energy per unit mass of fluid. 

Terms of energy equation standing for viscous transfer are as 
follows: 
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Here æ is the ratio of specific heats; 
ρ

æpa =  the 

speed of sound, and the corrected thermal conductivity k=1. 
 

Components of tensor of viscous stresses are 
calculated from the formulae: 
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          We use stagnation density of the entering gas and 
critical speed of sound in relative motion to bring the Eq.1÷6 
into the non-dimensional form. 

To outline turbulent flows, Baldwin-Lomax two-
layer algebraic eddy viscosity model is applied (Baldwin, 
B.W., 1978). 

For integration of Eq.1-6 we use modified scheme by 
S.K. Godunov (Mileshin, V.I., et al., 2000, and Ivanov, 
M.Ya., et al., 1989, and Kopchenov, V.I., et al., 1994). 
According to the modified scheme of S.K.Godunov, non-
stationary Navier –Stokes equations are written as integral 
conservation laws for a volume of space and an interval of 
time taking into account grid velocity due to motion of the 
volume’s faces along the stream-surface (m, θ). 

                                          ∫∫ +
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         Here A(t) is the (m, θ) stream-surface’s element 
arbitrarily varying in time; L(t) its boundary; Dm  and  Dθ 
are the components of the boundary velocity which is 
normal to the boundary L(t) and tangential to the stream-
surface (m, θ).  

Time-marching procedure generates stationary flow 
beginning with fairly arbitrary initial and boundary 
conditions. Time-marching procedure is developed for 
moving grid. Grid motion is computed from a change of the 
airfoil’s shape determined at each time step.  

Explicit Godunov scheme of raised order of accuracy 
(Mileshin, V.I., 1992), or implicit modified Godunov 
scheme (Kopchenov, V.I., et al., 1994) are used to integrate  
the set of Eq.7. 
 
BOUNDARY CONDITIONS 

Flow functions have to comply with given flow 
conditions on the boundaries of computational domain. Type 
and number of the boundary conditions are obtained in 
accord with principles set out in (Mileshin, V.I., et al., 2000, 
and Godunov, S.K., et al., 1976, and Ivanov, M.Ya., et al., 
1989). 

For subsonic entering flow, total pressure, stagnation 
temperature and flow angle are specified at inlet.  At 
periodic boundary, the missing values at points outside the 
computational domain are replaced by the values at 
corresponding points at the other periodic boundary. Along 
the airfoil surface, boundary condition depends on the mode 
of computation: in case of direct mode boundary condition 
imposes the slope of the velocity vector, in case of inverse 
mode pressure distribution along the airfoil surface is 
imposed. Given pressure is used as a boundary condition at 
outlet.  

Applying inverse mode, in advance it is difficult to 
guess correct pressure distribution providing trailing edge 
closure and avoiding self-intersection of airfoil contour. To 
eliminate this difficulty pressure distribution is on either 
suction or pressure side of the airfoil. The other side is 
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defined from the condition of given airfoil thickness 
distribution. 

 
GRID GENERATION  

To simplify implementation of the inverse method, 
we use the curvilinear H-type grid with exponential 
stretching of grid nodes to airfoil’s leading and trailing edges 
and to its surfaces. Grid is analytically tractable saving CPU 
time for its generation at each time step (Fig.1).  

 
ALGORITHM OF THE AIRFOIL DESIGN 

As is done in Godunov scheme (Godunov, S.K., et 
al., 1976), exact Riemann solver is applied to obtain 
numerical fluxes over each face of a cell using known flow 
parameters in the centers of neighboring cells. In particular, 
normal to the airfoil surface component of velocity D

r
 is 

obtained from known parameters in cells neighboring airfoil 
surface and from given pressure distribution along the 
surface noting that locally airfoil contour matches with 
contact discontinuity. Thus the problem of geometrical 
construction of the airfoil surface reduces to the resolution of 
contact discontinuity precisely computed by exact Riemann 
solver. Solution of Riemann problem is used for airfoil 
construction both in case of Euler equations and Navier-
Stokes equations. Only in case of Navier-Stokes equations 
we use modified Godunov’s scheme (Mileshin, V.I., et al., 
2000, and Godunov, S.K., et al., 1976, and Kopchenov, V.I., 
et al., 1994). 

Also notice that there is no leakage through the 
contact discontinuity, i.e. at each time step (t+τ) the flow 
direction is parallel to the moving airfoil surface. Velocity of 
contact discontinuity determines displacement of the airfoil 
surface. For example, the component of velocity of suction 
surface displacement in the direction normal to the surface, 
for the cascade shown on Fig.1, is calculated from the 
Eq.10: 
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and velocity of pressure surface displacement is obtained 
from the formula: 
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here PPss and PPps are given pressures on suction and 
pressure surfaces correspondingly, pss and pps  are 
pressures in cells neighboring airfoil surface, А0 is the mass 
velocity Eq.10.  

The value of А0 is determined from the following 
formula Eq.10: 
                      if     PPSS ≥ pSS,      then 
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Obtained normal velocities of the airfoil surface 

segments movement Dss or Dps determine the surface 
normal displacement ∆ = τ⋅D in a time step τ. Because grid 

at the moment (t+τ) is determined by new location of nodes 
along the guidelines of the grid, then its construction consists 
in calculation of the nodes displacement, not the surface 
segments displacements. Fig.1 demonstrates computation 
grid and domain. Vertical grid lines are fixed and used as 
guidelines; grid lines crossing them are movable.  

Calculation of normal surface velocities is important 
for geometrical construction of airfoil, but it is not enough 
for successful construction. It is due to fairly arbitrary initial 
values of flow parameters in grid cells generating shock 
waves on airfoil surface or other flow singularities, which 
cause steep gradients of flow parameters. Non-uniformity of 
flow parameters may cause saw-like surface of airfoil and 
instability of the inverse problem solution. 

To eliminate such instability, geometrical 
construction of the airfoil has to stabilize itself. Geometrical 
construction algorithm has to provide restricted velocity of 
node displacement along the guideline even in case of saw-
like airfoil surface. For the saw-like airfoil, node velocity is 
remarkably larger than normal surface velocity. 

To restrict this velocity let use analogy with known 
principle of Huyghens. Recall the manner of acoustic wave 
front construction according to the principle of Huyghens: at 
the moment t each front point is considered as a source of 
disturbances. The velocity of sound is the speed of 
propagation of a disturbance if gas is at rest. Taking into 
account flow velocity W

r
, boundary of acoustic wave can be 

obtained as a boundary of disturbed medium.  
Godunov method allows constructing the contour of 

contact discontinuity in the same manner. For that we use 
normal velocities of centers of each segment of the contact 
discontinuity obtained for the time step t. Normal velocity 
D of each segment plays a similar role as speed of sound in 
the principle of Huyghens. Therefore construction of contact 
discontinuity segment at the time step (t+τ) begins with its 
normal transfer for a distance ∆ = τD. But in contrast to the 
time step t, at the time step (t+τ) two circles will be 
attached to the transferred segment of contact discontinuity. 
After that obtained construction at the time step (t+τ) has to 
be transferred for a vector ssW

r
⋅τ . In the general case the 

magnitude of the vector ssW
r

⋅τ  differs from zero. 
Fig.2 demonstrates fulfillment of the algorithm. 

Here L1(t), L2(t) and L3(t) are the segments of contact 
discontinuity at time step  t,   L1(t+τ), L2(t+τ) and 
L3(t+τ) segments of contact discontinuity at time step 
(t+τ). Peculiarity of segments of contact discontinuity is 
that at time step (t+τ) circles are contiguous with the ends 
of segments. Dashed lines constructed as envelope achieved 
during propagation of disturbances for a distance τD, and 
solid lines are obtained by the following transfer of the 
portions )(t1L τ~ + , )(t2L τ~ +  and )(t3L τ~ +  for 

corresponding vectors ssW
r

⋅τ .  
P1, P2 and P3 on Fig.2 are the guidelines. Guideline 

P2 intersects with L1(t+τ) in the point T2 and with  
L2(t+τ) in the point N2. Guideline P3 intersects with 
L2(t+τ) in the point T3 and with L3(t+τ) in the point N3. 
According to principle of Huyghens at time step (t+τ) the 
new node of contact discontinuity will located on the 
guideline P2 at the point N2, and on guideline P3 at the 
point N3. As an example, on fig.2 both of these points lie on 
the portions of circumferences L2(t+τ) and L3(t+τ) 
correspondingly. Also notice that previously the analogy 
with principle of Huyghens has been successfully used for 
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resolution of shock waves in the framework of Euler 
equations (Kraiko, А.N., et al., 1980, and Mileshin, V.I., 
1986). 

  
EXAMPLE OF SOLUTION OF A QUASI-3D INVERSE 
PROBLEM FOR NAVIER-STOKES EQUATIONS 

As mentioned above, to solve inverse problem 
static pressure distribution has to be given along suction or 
pressure surface of blade. To prevent self-intersection of 
blade surface only suction surface (or pressure surface) is 
determined in the process of solution, coordinates of 
pressure surface (suction surface) are determined from given 
blade thickness. If static pressure distribution is such that 
there is no self-intersection of blade surface, then both 
suction and pressure surfaces are designed without regard for 
blade thickness. 

  An example is application of quasi-3D inverse 
Navier-Stokes-based solver to redesign rotor of high-loaded 
compressor stage (total pressure ratio π*stage=1.7, 
theoretical work input coefficientHT=0.384). Main 
peculiarity of the rotor is supersonic flow on suction surface 
with pre-shock Mach number equal to 1.3.  

Suppression of shock-induced flow separation by 
decrease of maximum Mach number was the design target. 
To diminish pre-shock Mach number six blade sections on 
surfaces of revolution lying between 20% and 80% of blade 
height have been redesigned. Main aim was 0.1 drop of pre-
shock Mach number. Performances of initial stage: π*rotor 
=1.73, η*ad rotor =0.874, π*stage=1.70, η*ad stage=0.849. 
Performances of inverse design: π*rotor =1.72, η*ad rotor = 
0.892, π*stage =1.69, η*ad stage=0.867. Guide vane of the stage 
remains the same in this investigation. 

Fig.3 demonstrates Mach number level lines on 
suction surface of initial (left) rotor blade and redesign 
(right). It shows that 0.1 diminishing of pre-shock Mach 
number makes Mach level lines aft-shifted. Besides that, 
separation zone located at 75% of initial blade height is fully 
eliminated in re-designed blade flow. 

Fig.4 demonstrates Mach level lines for initial airfoil 
(left) and redesign (right) of blade section located at 50% of 
blade height.  

Comparison of radial distributions of adiabatic 
efficiency at the outlet of initial rotor and redesign is shown 
on fig.5. Within redesign range (from 20% to 80% of blade 
height) adiabatic efficiency increases. Fig.6 explains that 
adiabatic efficiency increase has been achieved by 
diminishing of total temperature growth accompanied by 
maintained total pressure ratio. 

Fig7. presents static pressure distributions for three 
sections of initial blade and redesign of the rotor.  

 
CONCLUSIONS 

New quasi-3D inverse non-iterative redesign 
method for a stationary or rotating cascade of axial 
compressor blade row is presented. Main advantage of the 
method is application to viscous flow, i.e. airfoil is shaped 
by integration of Navier-Stokes equations from given static 
pressure distribution along airfoil contour. Another 
advantage is that this approach to solution of inverse 
problem can be extended to 3D flows.  Being combined with 
3D viscous Navier-Stokes solver this method is a useful tool 
for design of a multi-stage axial compressor.   

Inverse redesign method presented in this paper 
has been applied to improve adiabatic efficiency of a high-
loaded rotor of axial compressor stage. Suppression of 
shock-induced flow separation by decrease of maximum 
Mach number as a design target has been successfully 
achieved.  

 

REFERENCES  
Dang, Т., Damie, S., and Qiu, X., 2000, "Euler-Based 

Inverse Method for Turbomachine Blades. Part 2: Three-
Dimensional Flows," AIAA Journal, Vol. 38, №11, pp. 
2007-2013. 

Demeulenaere, A., and Leonard, and Van den 
Braembussche, R.A., 1997, “A Two-Dimensional Navier-
Stokes Inverse Solver for Compressor and Turbine Blade 
Design”, Procedings of the Second European Conference on 
"Turbomachinery - Fluid Dynamics and Thermodynamics", 
Antwerp, Belgium, 339-346. 

Demeulenaere, A, and Van den Braembussche, R.A., 
1996, "Three-Dimensional Inverse Method for 
Turbomachinery Blading Design," ASME Journal of 
Turbomachinery,  120(1), 247-255. 

De Vito, L., Van den Braembussche, R.A., and 
Deconinck, H., 2002, "A Novel Two Dimensional Viscous 
Inverse Design Method for Turbomachinery Blading", 
Proceedings of ASME TURBO EXPO 2002, June 3-6,  
Amsterdam, The Netherlands, GT-2002-30617, pp. 1-10. 

Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., 
Kraiko, A.N.,  Prokopov, G.P., 1976, "Numerical Solution of 
Multi-Dimensional Problems of Gas Dynamics", М.: 
"Nauka", (in Russian). 

Gouskov, O.V., Kopchenov, V.I., Nikiforov, D.A., 
1994, “Flow numerical simulation in the propulsion 
elements of aviation space system within full Navier-Stokes 
equations”, In International Conference on the Methods of 
Aerophysical Research, Proceedings, Part 1, Novosibirsk,  p. 
104-109. 

Ivanov, M.Ya., Krupa, V.G., Nigmatullin, R.Z., 
1989, "Implicit S.K.Godunov’s scheme of Raised Accuracy 
for Integration of Navier-Stokes Equations ", Journal of 
Computational Mathematics and Mathematical Physics,  
v.29, pp. 888-901 (in Russian). 

Kraiko, А.N., Makarov, V.Е., Tillyaeva, N.I., 1980, 
"To Numerical Construction of Shock Wave Fronts", Journal 
of Computational Mathematics and Mathematical Physics,   
v.20,  №3, pp. 716-723 (in Russian). 

Meauze, G., 1982, "An Inverse Time Marching 
Method for the Definition of Cascade Geometry," Journal of 
Turbomachinery, Vol. 11, pp. 650-656. 

Mileshin, V.I., 1986, "Computation of 3D Supersonic 
Flow within Engine Inlet at the Detached Shock Flow 
Regime", Journal of Computational Mathematics and 
Mathematical Physics, v.26, №11, pp. 1704-1718 (in 
Russian). 

Mileshin, V.I., Startsev, A.N., Orekhov, I.K., 2000, 
"Method of design and development of axial and centrifugal 
compressors, based on 3D viscous flow analysis in the 
context of Navier-Stokes equations and solutions ofquasi-3D 
inverse problems of gasdynamics", Vol.2, "Scientific 
contribution to design of aviation engines," Ed. V.A. Skibin 
and V.I. Solonin, Moscow, Macihe building,  (in Russian). 

Mileshin, V.I., Startsev, A.N., Orekhov, I.K., 
Pankov, S.V., 2001, "Computational and Experimental 
Investigation of High Pressure Axial and Centrifugal 
Compressors with Ultra-High Rotational Speed," XV 
International Symposium on Airbreathing Engines, 
Bangalore, India, September 2-7, ISABE 2001-1115. 

Mileshin, V.I., Zhuravlev, V.V., Kraiko, A.N., 
Startsev, A.N., Orekhov, I.K., Schipin, S.K., 1992, "Calcul 
Transsoniques et Supersoniques Tri- et Quasi-
Tridimensionnels pour Compresseurs Axial et Centrifugees", 
J. Mechanique de France, №1992-4. 

 
 
 
 



 

 5

  

 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                           P3                                       P4  
                                         P2                                                     
              P1  

 
 
  
 
 
 
 
 
 
 
 
 
 
 

                                                       Fig. 2 

•

•
• •

•

D1 
L1(t) 

L2(t) L3(t)

L3(t+τ) ss3wrτ

•

•

•
•

•

T1 D1 

D2 

D3 

D3 
D2 

T2 

T3 N2 

N3 
L2(t+τ) 

L1(t+τ) 

)τ(~
3 +tL

ss3wrτ
ss2wrτ

ss2wrτ

ss1wrτ  

ss1wrτ

)τ(~
2 +tL

)τ(~
1 +tL

  

Fig.1 Grid 



 

 6

 
 

 
         
 

                                      
Fig.  3     Rotor of  high-pressure compressor. Suction side of blade.  Mach number level lines, step = 0.1   Left 

– initial design, right – inverse design. Performances of initial design:    π*rotor =1.73    η*ad rotor = 0.874    
π*stage = 1.70   η*ad stage = 0.849. Performances of inverse design:   π*rotor =1.72    η*ad rotor = 0.892    
π*stage = 1.69   η*ad stage = 0.867. 

 
 
 
 
 

               Initial rotor                                                           Inverse design  

                                                                       
Fig.  4     Rotor of  high-pressure compressor. 50% of blade height.  Mach number level lines, step = 0.1   Left 

– initial design, right – inverse design.  Performances of initial design:    π*rotor =1.73    η*ad rotor = 0.874    
π*stage = 1.70   η*ad stage = 0.849. Performances of inverse design:   π*rotor =1.72    η*ad rotor = 0.892    
π*stage = 1.69   η*ad stage = 0.867. 

        Initial rotor                                                    Inverse design  
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    Fig.  5     Radial distribution of rotor’s adiabatic efficiency. Comparison of initial design (diamonds) and 
redesign (squares).      Performances of initial design:    π*rotor = 1.73    η*ad rotor = 0.874    π*stage = 1.70   
η*ad stage = 0.849. Performances of inverse design: π*rotor = 1.72    η*ad rotor = 0.892    π*stage = 1.69   
η*ad stage = 0.867 
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    Fig.  6     Radial distribution of rotor’s total temperature rise (left) and total pressure ratio (right)
at the exit of rotor. Comparison of initial design (diamonds) and redesign (squares).  
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Fig.7  Static pressure distributions on hub (20% of blade height) – a), mid-span (50% of blade
height) – b), and tip (80% of blade height) –c) of initial and re-designed rotor. Static pressure
distributions are resulted from 3D viscous flow calculation of axial compressor as a whole.  


