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ABSTRACT
A stable high order finite difference with a fully implicit

time-marching scheme is proposed to solve the two-dimensional
unsteady convection diffusion equation with variable coefficients. It
is essentially compact and has the nice features of a compact scheme
with regard to the treatment of boundary conditions. A
time-dependent multigrid full approximation storage(FAS) scheme ,
which is suitable for both linear and nonlinear problem, is employed
to accelerate convergence for the implicit scheme at each time step.
Numerical simulations of the unsteady driven flow and natural
convection in a square cavity are performed by the present method.
The study demonstrates that the method developed here is very
accurate, computationally efficient and is capable of performing
accurate simulations of time-dependent, and possibly chaotic, flows
in enclosures.

INTRODUCTION
Numerical solution of the convection diffusion equation plays a 

very important role in computational fluid dynamics and numerical 
heat transfer to simulate heat and fluid flow problems. Traditional
finite difference discretization schemes such as the second-order
central difference scheme and the first-order upwind scheme have
the drawbacks of either lack of stability (central difference) or lack
of accuracy (upwind). Recently, there has been growing interest in
developing fourth-order finite difference schemes for the convection
diffusion equation (and the Navier-Stokes equations) which give
high accuracy approximations (Dennis,1989; Gupta , 1997; Zhang,
1997). Although considerable amount of work has done in the past,
researchers are concerned more on steady problems(Dennis,1989;
Gupta, 1997; Zhang, 1997) than unsteady ones which are studied by
the characteristics difference method (Douglas ,1982 ) and the 
Group Explicit(GE) method(Evans, 1985). There is still a lack of a 
completely satisfactory computational (stability and accuracy)
scheme that is suitable for all types of unsteady convection diffusion
equations. Therefore, in this paper, for the two dimensional unsteady
convection diffusion equation with variable coefficients
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in which, the convection coefficients and  are

functions of the variables
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sufficiently smooth. The diffusion coefficient is constant. 
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Firstly, a fourth-order compact finite difference in the space
directions and a second-order fully implicit time-marching scheme
is presented; Then, a time-dependent multigrid FAS scheme is 
applied to accelerate convergence process when iterative methods
are used to treat the implicit scheme at each time step; Finally, driven
flow and natural convection in a square cavity as two test problems 
are simulated to examine accuracy and efficiency of our basic
scheme’s applications in the calculation of heat transfer and fluid
flow.

HIGH ACCURACY DIFFERENCE SCHEME 
Considering the classical BTCS scheme (Backward for Time and

Center for Space), characteristics difference method (Douglas ,1982)
and the GE method (Evans,1985),has only low order accuracy in
space whereas improving the accuracy of schemes, especially that of
convection terms, is very crucial and efficient for improving the
stability, accuracy of schemes and decreasing the computational
cost(by discretizing computational domain with comparably coarse
grids). Therefore, in this paper, we firstly construct a high order
compact full implicit difference scheme.

Assuming a uniform grid in both x- and y- directions, we number 
the grid points (x,y), (x+h,y), (x,y+h), (x-h,y), (x,y-h), (x+h,y+h),
(x-h,y+h), (x-h,y-h) and (x+h,y-h) as 0, 1, 2, 3, 4, 5, 6, 7 and 8
respectively ,where h is the grid size. In writing the finite difference
approximations, a single subscript j denotes the corresponding
function value at the grid point numbered j. denotes time step size

and ,jiij ggg g can be qp ,, etc.

Following the discretizing method by Ge (2003), a second-order
backward Euler difference scheme for the time derivative term and
making use of the fourth-order compact difference formula
(Hirsh ,1975) for the second order space derivative terms while the
first order derivative terms are discretized by center difference
scheme but the third order derivative term is kept for modification.
Finally we can get its fourth-order full implicit discretization scheme
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in which, n , and1 p , in the coefficients and

correspond to the exact values on the (

q ,,1 nn BA

)11nC n n,th th

and )1(n th temporal levels. 

The Eq.(2) with the local truncation error O is the high

order implicit compact difference scheme for Eq.(1). We notice that
it is a three-level scheme, which means that only we get the
information on the first temporal level besides initial values
computations can be continued. So, at the last step above, we just
substitute the second Euler difference formula with classical
backward difference, scheme for the first temporal level can be
constructed.

)( 42 h

 MULTIGRID METHOD 
To solve the large-scale discrete system that arises at each time

step from the fully implicit time-marching scheme, conventional
relaxation methods are much too inefficient. In order to obtain fast
convergence, we use a multigrid method. The most important
operator in the multigrid method is the relaxation operator(the
smoother). Its role is not to remove the errors, but to damp the high
frequency components of the errors on the current grid while leaving
the low frequency components to be removed by the coarser grids.
We employ the multigrid V-cycle scheme and point-SOR method as 
the smoothing operator. and the full-weighting restriction operator
and  the bi-linear interpolation operator For details, refer to (Brandt,
1977, Wesseling , 1992).

  Considering the characteristics of the time-dependent equation
and easy to be extended to nonlinear cases, we put forward a revised
FAS scheme of multigrid which differs from the one used for the
steady problems(Gupta,1997; Zhang, 1997) to obtain more accurate 
corrected results on the coarse grids. For simplicity of discussion, a 
two-level time-dependent FAS algorithm for a general equation of
the form: 
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in which, are difference operator, restriction operator and

prolongation operator respectively and

PRL ,,

is approximate value of

. represents spatial fine grid level and  coarse grid level.k
1

1k
n , ,n 1n  represent temporal levels respectively.
In the process of the multigrid algorithm above, only dropping off all

terms concerning with 1n  and let , the multigrid
algorithm on the first temporal level can be obtained. 

0n

NUMERICAL EXPERIMENTS

Driven cavity flow

As a model problem, we consider the incompressible viscous 
flow in a square cavity (0 x, y 1). The flow is induced by sliding
motion of the top wall from left to right and described by the
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Navier-Stokes equations in vorticity-streamfunction formula:

yyxx (3)

Re/)( yyxxyxt vu (4)

The boundary conditions are those of no slip: on the stationary walls
u=0 and v=0; on the sliding wall u=1 and v=0. 

Heated cavity flow
Another model problem, we still consider a square cavity(0 x, y
1) with differentially heated sidewalls and adiabatic top and

bottom walls which is one of the classical problems in the field of
heat transfer.  For the case, the surface between the hot and cold
walls are insulated. The governing equations are given in
streamfunction-vorticity form as 

yyxx                         (5) 

xyyxxyxt TRavu Pr)Pr(        (6) 

yyxxyxt TTvTuTT                 (7) 

with boundary conditions to be satisfied are 0x ,

1T on the hot wall; 0x , T on the cold wall,

and

0

0y , T on the top and bottom walls. 0y

  In the two problems above, , and represent the

streamfunction, vorticity and temperature respectively. u

T

y

and xv
Re

are velocity component at x- and y- direction

respectively. , Pr and are the non-dimensional Reynolds,
Prandtl and Rayleigh numbers. 

Ra

These two test problems, as the demonstration of accuracy and
dependability of developed methods, have been studied by many
researchers (Ghia, 1982; Paolucci, 1989; Bruneau 1990; Le Quéré  1991; 
Liu, 1993; Janssen ,1993; Nobile, 1996; Syrjälä , 1996). It has been
shown that flows becomes unsteady for a value of Re larger than
5000 for driven flow (Liu H, 1993; Ge,2003) and Ra close to

when8102 Pr equal 0.71 for natural convection in a square
cavity (Paolucci,1989; Janssen, 1993).This was also confirmed very
recently by Nobile, 1996).

Eq.(3) and (5) are Poisson type equations, we use the typical
fourth order nine-point discretization (Tian , 1996):
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We notice that Eq.(4), (6) and (7) are all unsteady convection
diffusion equations, consequently we can discretize them by using

Eq.(2). Besides, u , v  and T , the coefficients of first derivative

terms

x

yTxT ,yx ,, , are the unknown quantities, so they must 

be discretized by same order accuracy in order to obtain the full
fourth order accuracy of the scheme, their discretized schemes are as
follows:

)()2/(6/6/46/ 4
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The implementation of numerical boundary conditions has
received considerable attention in the past. Usually vorticity
conditions on the boundaries are employed and proved successful in
practice. In this work, to agree with the high-order scheme, we make 
use of a fourth-order-accurate numerical boundary formulation
proposed by Sptoz (1998) 

wVhhOh )14/()1615()(21/)46( 210
4

210

and the boundary temperature T  by  Ge (2002) 0y

)(11/)2918( 4
3210 hOTTTT

where the subscript 0 denotes a value at a boundary grid point and
the subscript j (j=1,2,3) denotes the value at the jth internal grid
point along the inward normal at 0. Vw is the velocity on the wall.
Vw=0 except on the moving wall where Vw =1 for the driven cavity.

All computations are done on Pentium III/1000 private computer
using the Fortran 77 programming language in double precision. In
the solution procedure, the result with lower Reynolds/ Rayleigh
number is obtained at first, then the configurations with higher
Reynolds/ Rayleigh number are solved by using the solution with
lower Reynolds/ Rayleigh number as an initial value. The
momentum and energy transport equations are solved by fully
implicit time marching method. 

 In Table 1, there list all kinds of parameters used in the 
computation and time steps for obtaining convergent solutions for
driven cavity flow. Computation results show that the accuracy of
the method is independent of time increment for steady solution, so
we can use big time increment. For instance, for Re=400, we can get
convergent solution after eight time marching steps at =10 while 
6000 time steps needed at =0.001 in reference (Liu, 1993). Table 2
reports the strength and location of the primary, secondary, and 
tertiary vortices for 400Re , . For reference, the
results obtained by Ghia  (1982) and Nobile (1996) are listed. 

,1000 5000

Figures 1~4 show the velocity profiles for u along the vertical 
line and v along the horizontal line passing through the geometric
center of the cavity for Re=400,1000 and 5000 respectively and
streamline contours for Re=1000,5000, which agree well with the
results of reference (Ghia U, 1982). However, when Re>5000, there
is no steady laminar solution. Flow becomes unsteady and periodic.
Figures 5~8 show the streamline contours for Re=7500 and 10000 at
t=60 and the time histories of their velocities at point (0.5,0.5)
respectively. Through observation, we can discover that the time
period is about 6.58 for Re=7500 and 6.75 for Re=10000 while 6.56
and 6.36 respectively in the reference (Liu, 1993). 

For the heated cavity flow, we use V(2,2) multigrid cycle.

Numerical results when Pr=0.71 and Ra from to are

considered. Table 3 compare the present results for Ra ,

, 10 ,10 and 10 with the benchmark solutions in de Vahl
Davis (1983), the compact difference solutions in Dennis and
Hudson(1989), the results from Le Quéré(1991), who  solved the 
problems using a pseudo-spectral Chebyshev algorithm, and the finite
element solutions in Syrjälä(1996). This table show the excellent
agreement of the present results with those of the benchmark
solution and stable fourth-order method for all the values of Ra

from 10  to 10 , with those of the compact difference method up

310 710

103

410 5

3

6 7

6
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to 10 , with those of Le Quéré(1991) for and 10 , and

with those of finite element method for and 10 . We

use grids for ,

5

32

Ra

Ra

610
510

7

6

32 Ra 310 6464 grids for and

, grids for and . For all multigrid
cycles, the number on the coarsest grids is . The time steps are

selected as

Ra 410
510 128128 Ra 610 710

4 4

20 for ,Ra 310 5.2 for ,Ra 410

25.0  for ,Ra 510 005.0  for  andRa 610

00025.0  for .Ra 710

Ra Ra 10

Ra 510
Ra

r 3101
7101
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Figures9~12 contain level curves for Streamline contour and
isothermal lines plots. An analysis of pictures shows that the flux is 

symmetric with respect to the center for every . At
the main feature of the flow is a central elliptic vortex, and the heat
transfer is mainly due to conduction (vertical isotherms).

For , the vortex breaks into two vortices moving toward
the vertical walls for higher values of , a third, weaker vortex is
observed. Increasing Ra causes a changer of heat transfer
mechanism. In fact, convection tends to become dominant: The
isotherms are vertical everywhere, being horizontal only in the 
neighborhood of vertical walls (very thin thermal boundary layer).

4

CONCLUDING REMARKS
In this work, a high accuracy muligrid solver based on the 

fourth-order compact implicit difference scheme and time
-dependent FAS scheme for general unsteady convection-diffusion
equation is constructed. The time-dependent heat and fluid flows in
a two-dimensional square cavity have been studied numerically.

Its accuracy has been verified for the well-known driven cavity
flow problem, where the results on coarser meshes agree well with
previous numerical results on finer grids for Re 5000. In addition,
fine-grid results have illustrated the unsteady flow dynamics when
Re=7500 and Re=10000, which is in good agreement with results in 
the literatures. 

 Fully implicit time-marching scheme overcomes the inefficiency
of explicit scheme only when time increment is small enough to
keep computation convergence, e.g. = 0.001~0.002 (Liu, 1993). 
Computation results show that the accuracy of the method are
independent of time increment for Re 5000, so we can use big time 
increment to shorten the process of convergence to steady solution.
Besides, for unsteady and periodic solution when Re=7500 and
Re=10000, we can still use considerably big time increment
e.g. =0.1.

 The suitability of the proposed method to compute buoyant flows
has been demonstrated by the calculation of the flow in a side-heated

cavity, for fluids with P values of 0.71, Ra from  to

. Close agreement is found for all the character -ristic
quantities with the data reported in literatures. 

Furthermore, it seems to promise to be a very efficient and
accurate approach for more practical problems including three
dimensions and complicated flows. 
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APPENDIX: HIGH ACCURACY DIFFERENCE SCHEME
FOR 3D CONVECTION DIFFUSION EQUATION

For the three-dimensional (3D) unsteady convection diffusion
equation with variable coefficients
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in which, the convection coefficients p , ,q r  are functions of the
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The diffusion coefficient a is constant. The fourth-order full 
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Table 1 Parameters used in the computation and status of convergence

Re Grid point Grid levels V-cycle Time-increment Time steps needed 
400 64 64 five V(1,1) 10 8
1000 64 64 five V(1,1) 10 8
3200 128 128 four V(1,1) 1 37
5000 128 128 four V(1,1) 0.5 107
7500 256 256 three V(2,2) 0.1 periodic solution

10000 256 256 three V(2,2) 0.1 periodic solution

Table 2 Comparison of extreme value of streamfunction 

  Primary vortex 
 (location) 

Secondary  vortex,
  bottom  Right, 

 (location) 

Secondary  vortex, 
  bottom  left, 

 (location) 

            Re=400 
Ghia et al (256 256) -0.1139 (0.5547,0.6055) 6.42E-4 (0.8906,0.1250) 1.42E-5 (0.0508,0.0469) 
Nibile   (96 96) -0.1131 (0.5521,0.6042) 6.59E-4 (0.8854,0.1250) 1.53E-5 (0.0521,0.0521) 
Present     (64 64) -0.1135 (0.5469,0.6094) 6.59E-4 (0.8906,0.1250) 1.37E-5 (0.0469,0.0469) 

            Re=1000 
Ghia et al (128 128) -0.1179 (0.5313,0.5625) 1.75E-3 (0.8594,0.1094) 2.31E-4 (0.0859,0.0781) 
Nibile   (128 128) -0.1175 (0.5313,0.5625) 1.77E-3 (0.8594,0.1094) 2.32E-4 (0.0859,0.0781) 
Present     (64 64) -0.1166 (0.5313,0.5625) 1.87E-3 (0.8594,0.1094) 1.97E-4 (0.0781,0.0781) 

            Re=5000 
Ghia et al (256 256) -0.1189 (0.5117,0.5352) 3.08E-3 (0.8086,0.0742) 1.36E-3 (0.0703,0.1367) 
Present    (128 128) -0.1184 (0.5078,0.5467) 3.42E-3 (0.7969,0.0781) 1.01E-3 (0.0781,0.1250) 

Table3 Comparison of results with literatures when Pr 71.0 for different Ra

mid max maxu maxv 0Nu maxNu minNu
310Ra

present 1.1742 1.1742 3.6481 3.6901 1.1181 1.5078 0.6905
Dennis et al 1.1747 n.a 3.6497 3.6977 1.1176 1.5058 0.6913
De Vahl Davis 1.174 n.a 3.649 3.697 1.117 1.505 0.692

410Ra
present 5.0719 5.0719 16.1692 19.5929 2.2450 3.5327 0.5844
Dennis et al 5.0735 n.a 16.1829 19.6293 2.2396 3.5193 0.5851
De Vahl Davis 5.071 n.a 16.178 19.617 2.238 3.528 0.586

510Ra
present 9.1104 9.6056 34.6163 68.5578 4.5097 7.7196 0.7203
Dennis et al 9.1126 n.a 34.716 68.637 4.4959 7.6830 0.7279
De Vahl Davis 9.111 9.612 34.73 68.59 4.509 7.717 0.729

610Ra
present 16.4107 16.8412 64.7611 220.246 8.7719 17.5445 0.9589
De Vahl Davis 16.320 16.750 64.63 219.36 8.817 17.925 0.989
Le Quéré 16.3864 16.8111 64.8344 220.559 8.8252 17.5360 0.9795
Syrjälä 16.3863 n.a 64.833 220.56 8.8251 n.a n.a

710Ra
present 29.4326 30.2061 148.8537 699.091 16.4021 39.5376 1.2987
Le Quéré 29.361 30.165 148.59 699.17 16.523 39.39 1.366
Syrjälä 29.3616 n.a 148.593 699.506 16.5299 n.a n.a
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Fig1 Profiles of u-velocity along vertical lines
through geometric center 

Fig 3  Streamfunction contours for Re=1000 

Fig. 5 Streamfunction contours for Re=7500 
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Fig 7 Time history of v-velocity for Re=7500 
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Fig4  Streamfunction contours for Re=5000 

Fig. 6 Streamfunction contours for Re=10000 
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Fig 8 Time history of v-velocity for Re=10000 
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Fig.9a Streamlines for Ra=10 4

Fig.10a Streamlines for Ra=10 5

Fig.11a Streamlines for Ra=10
6

Fig.12a Streamlines for Ra=10
7

Fig.9b Isothermal lines for Ra=10 4

Fig.10b Isothermal lines for Ra=10 5

Fig.11b Isothermal lines for Ra=10
6

Fig.12b Isothermal lines for Ra=10
7


