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Gas Path Analysis (GPA) based techniques allow the

determination of machine health state by means of the calculation
of health indices, such as efficiencies, characteristic flow passage
areas and pressure drops along the gas path. One of the key
aspects of these techniques is the accuracy of the information that
can be obtained when they are applied in the field.

In this paper, in order to improve the reliability of the
diagnostic process when GPA based techniques are used, a
methodology is presented, which allows the identification of the
best combination of measurements and health parameters that
should be used for the determination of the gas turbine health
indices with the minimum uncertainty. This methodology is based
on the use of weighting factors derived from literature and
databases of maintenance reports for different typologies of
machines, in order to take into account the statistical occurrence
and incidence of failures. In this way, the most significant
measurements to be implemented in order to correctly diagnose
the failures are identified.
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M mass flow rate
n number of gas path measured variables and of Xv

parameters
P power
p pressure
(m vector of measured variables
(WP vector of measured variables necessary to define the

working point
RN Reward Number
s number of fixed parameters
t number of working point measured variables
T temperature
VN variable nozzle angular position
w weight
) *� ()f+� )v)� vector of non-dimensional characteristic

parameters
)f vector of fixed characteristic parameters
)v vector of variable characteristic parameters
, *�()f, (m, (WP)

µ = 
p

TM
 mass flow function

����������
c compressor
cc combustor
cool cooling
f fuel, fixed parameter
ggt gas generator turbine
ic compressor inlet section
oc compressor outlet section
oggt gas generator turbine outlet section
ot power turbine outlet section
pt power turbine
v variable parameter
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The optimization of industrial gas turbine maintenance and

operation, together with the increase in machine availability and
the reduction of management costs, can be achieved through the
knowledge of the gas turbine actual operating state (Hoeft, 1996;
Schmitt and Petroff, 1996; Bettocchi et al., 2001).

Gas turbine non-scheduled stops, because of unforeseen faults,
cause relevant costs related to the reduction or the interruption of
the process, and to the consequent repairing actions. For this
reason, in strategic applications, stand-by machines are usually
required to ensure the desired level of availability. The
optimization of gas turbine maintenance and operation can lead to
a considerable reduction of these costs, since non-scheduled stops
are minimized and additional economical investments for stand-by
machines can be reduced (Bettocchi et al., 2001).

The predominant strategy for industrial gas turbine
maintenance is the scheduled maintenance, which is performed
according to �� ������ schedules, regardless of the effective gas
turbine health state. An increase in machine availability and a
reduction of costs can be achieved if the regular maintenance is
supported by the on condition maintenance. The on condition
maintenance is based on ��� ��	 actions, derived from the
knowledge of the machine actual operating state.

One of the most widespread techniques for gas turbine health
state determination is the Gas Path Analysis (GPA). A GPA based
diagnostic process uses gas turbine field measurements to
determine, by means of a gas turbine thermodynamic cycle model,
the actual values of the parameters that are indices of the gas
turbine health state, such as efficiencies, characteristic flow
passage areas and pressure drops along the gas path (Stamatis et
al., 1990; Bettocchi and Spina, 1999). By comparing the actual
and the expected values of the parameters, it is possible to
determine (i) how far the actual machine operating condition is
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from the expected one, (ii) which components are degraded and
(iii) the causes of malfunctioning. Thus, the up-to-date knowledge
of the gas turbine health state allows the in-advance planning of
maintenance stops, depending on the actual gas turbine health
state, on the availability of stand-by machines and on the
production requirements. Furthermore, if the actual values of the
health indices are known, it is possible to decide to perform on-
line maintenance actions, to adapt the gas turbine control logic to
the machine actual health state and, in the worst cases, to stop the
machine to prevent from faults that may even compromise
machine integrity.

One of the most critical problems that has to be faced when
GPA techniques are applied is the reliability of the information
that can be obtained, which depends on several factors (Stamatis
et al., 1992; Pinelli and Spina, 2002):

1. Capability of the Cycle Program to accurately reproduce the
actual gas turbine thermodynamic cycle.

2. Accuracy of field measurements. To minimize measurement
error effects, it is usually advisable to support GPA techniques by
means of methodologies for measurement validation (Bettocchi et
al., 2001; Pinelli and Venturini, 2001). In this way, it is possible (i)
to determine whether a measurement set is reliable and, if it is
recognized as unreliable, (ii) to adapt the technique for the
operating state determination, for example by excluding such a
measurement set from the diagnostic process.

3. Limited availability of measured variables on the gas
turbine, which causes problems to correctly detect the actual
health state. In fact, for example, a single failure can lead to the
same effects (same measurement variations) than those that can be
induced by a series of concurrent failures. Furthermore, some
typologies of failures, as clearance increase or combustor
malfunctioning, are usually detectable with difficulty (Bettocchi
and Spina, 1999). So, only a sufficient number of measured
variables can help to distinguish among different culprits.

4. Some of the characteristic parameters to be estimated have
to be kept constant during the calculations. In fact, since the
number of the available measured variables is usually lower than
the number of characteristic parameters that have to be
determined, some of them have to be considered constant. This
causes an estimation error on the characteristic parameters that are
instead problem variables.

In this paper, a methodology, which takes into account the
statistical occurrence and incidence of failures, has been
developed, to identify the best measurement/parameter
combination that should be used for the determination of the gas
turbine health indices with the minimum uncertainty.  This was
done, by using factors related to the probability that a given failure
may occur to weigh the possible solutions of the operating state
determination problem. In this way, starting from the available
measured variables, it is possible to establish the most significant
measurements suitable to be performed in addition to the most
common ones and the best parameters combination according to a
given set of available measured variables, in order to improve the
accuracy in gas turbine operating state determination. The
weighting factors were determined starting from information
derived from literature and databases containing maintenance
reports and measurements taken on a large number of operating
gas turbines.

�	���'�!�"%�-	'&���"���%"�%
In order to define a scheduled maintenance program, it is

fundamental to know the component life and the rate of
performance decrease as a function of running hours and type of
installation (Hoeft, 1996; Ceschini and Carlevaro, 2002). This can
be done by analyzing gas turbine historical data over a long
period. The analysis is oriented to establish, on a statistical basis,
the incidence and the severity of machine malfunctions and
failures, in relation to typology (heavy-duty, aeroderivative, single
or two shaft, etc.), installation site (land, off-shore) and operating

regime (base load, alternate, stand-by).
The knowledge of failure incidence can be useful also for the

development and application of on condition maintenance. In fact,
as explained in the following paragraph, the use of indices related
to the probability that a given failure may occur allows the
uncertainty in gas turbine health state determination to be reduced.

Different sources of information about failure occurrence and
typology are available.

Manuals for turbomachine maintenance provide information
about component deterioration level as a function of machine
running hours. For example, Table 1 (Sawyer and Hallberg, 1980)
reports the results of the experience of one insurance company
over a 10-year period with failures or incidents involving gas
turbines. Blade failures (compressor and turbine) comprise the
largest group of failures (35%). Next in the order are fires and
explosions in the combustor and turbine sections. Information of
the type reported in Table 1 is used by gas turbine manufacturers
to schedule maintenance actions in order to prevent failures. This
is usually done by substituting the most critical component at
scheduled times.

Another source of information can be found in databases
developed by gas turbine users, which deal with the operating
stories of a given fleet of machines. Such information reports the
malfunctions which took place �
�����
 of the scheduled
maintenance and so the percentage incidence is completely
different from the one reported in Table 1. In fact, the scheduled
maintenance plan is intended to minimize the failure typologies in
Table 1, as outlined above.

One of these databases is the one developed by the OREDA
consortium (1999). OREDA (Offshore REliability DAta)
consortium groups a great number of companies involved in oil
and gas treatment, which are also gas turbine users. In particular,
the 1999 OREDA handbook edition reports data referring to 219
gas turbines working in off-shore sites for a total amount of
3.196.085 firing hours.

A statistical analysis was performed on the available data. The
percentage incidence of the failures, which can affect the main
components of a gas turbine (see Fig. 1, according to the scheme
adopted in OREDA), was determined. This was done both for all
the available machines (total amount of 219 gas turbines) and by
dividing them into two main classes: aeroderivative (74) and
heavy-duty (145).

Fig. 2 shows the failure percentage incidence for the
considered gas turbines (off-shore installations): it can be
observed that the most critical components are the monitoring and
control system and the gas generator. Moreover, it can be noticed
that failure incidence depends slightly from machine typology
(aeroderivative or heavy-duty).

Table 1 Causes of gas turbine failures
(Sawyer and Hallberg, 1980)

Failure type Percent of total

Turbine blade failures 25.5 %
Fires and explosions 16.0 %
Impact of loose parts 10.5 %
Compressor blade failures 9.5 %
Bearings, Lube failures 8.5 %
Blade tip rubs 5.5 %
Shaft failures 4.0 %
Turbine nozzle failures 3.0 %
Seals failures 3.0 %
Bearing support failures 3.0 %
Disk cracking 2.0 %
Combustor liner failure 2.0 %
Thrust-bearing wiping 1.0 %
Miscellaneous 6.5 %
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Fig. 1 Gas turbine main components (OREDA, 1999)
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Fig. 2 Failure percentage incidence (OREDA, 1999)

Tables 2 shows in detail, for all the 219 considered gas
turbines, the failure percentage incidence for the gas generator and
power turbine sub-components.

From the analysis of OREDA data, gas turbine failure
percentage incidence was also related to failure severity. On this
basis, a failure can be classified as:

 critical, if the considered component immediately and
completely loses the capability to fulfill its duty;

 performance deterioration, if component’s capability to
fulfill its function is altered and evolves towards a critical fault;

 incipient, when the failure, if not detected at the right time,
tends to a performance deterioration or to a critical failure.

Figure 3 shows the incidence related to the three classes of
failures, both for all the considered gas turbines and by
distinguishing between aeroderivative and heavy-duty machines.

In order to predict gas turbine availability, two indices related
to machine reliability can also be determined:

 the number of faults per machine, calculated as the ratio
between the number of faults and the number of gas turbines
under investigation;

 the Mean Time Between Failure (MTBF), referred to the
normal operation life (i. e. excluding the burn in and wear out
phases) and calculated as the ratio between the total firing hours
and the number of faults.

The calculation was performed dividing the gas turbine by
operating regime (base load, alternate or stand-by).

The results for the first of the two indices are shown in Fig. 4:
heavy-duty gas turbines, working at base load, have the smallest
number of faults per machine, while the most critical gas turbines
are the aeroderivative machines with alternate operating regime.

Figure 5 reports the MTBF values for all the failure severity
types, while in Figure 6 only critical faults were considered. It can
be observed that MTBF values in Fig. 5 are in quite good
agreement with faults per gas turbine in Fig. 4, i. e. highest
reliability for heavy-duty gas turbine working at base load and
high criticality for aeroderivative machines with an alternate
operating regime. As regards stand-by machines, they present
relatively low MTBF values since a quite high number of faults
(see Fig. 4) corresponds to a low number of working hours. In Fig.
6, the highest MTBF value (i. e. higher availability) between two
critical successive failures was found to be associated to heavy-
duty gas turbines with an alternate operating regime. This is
probably due to the fact that, for these machines, some incipient

failures or degradation are removed during machine stops, before
they degenerate into critical failures.

Table 2 Causes of gas generator and power turbine failures
(OREDA, 1999)

Failure type Percent of total

����������	
��	�����
Fuel control system 10.6 %
Valves 4.3 %
Intake 3.6 %
Ducts 3.1 %
Combustor 2.4 %
Burners 1.7 %
Sensors 0.5 %
Compressor stator 0.3 %
Compressor rotor 0.2 %
HP turbine 0.1 %
Other 4.2 %
����������������
 ���� �

�
����	�����
Exhaust 1.7 %
Valves 1.2 %
Ducts 0.9 %
Sensors 0.7 %
Bearings and seals 0.4 %
Power turbine rotor 0.3 %
Power turbine stator 0.1 %
Other 1.7 %
���������������
 ��� �
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Fig. 3 Percentage incidence related to failure severity
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Fig. 4 Faults per gas turbine related to operating regime
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Fig. 5 Mean time between failure MTBF per gas turbine related to
operating regime
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Fig. 6 Mean time between two �������� successive failures per gas
turbine related to operating regime

Table 3 Causes of gas turbine failures: ranking by forced outage
(Ogaji et al., 2002)

Failure type Percent of total

Control system 24.5 %
Fuel system 11.5 %
Compressor 2.0 %
Turbine 1.0 %
Other 60.0 %

Table 3 reports the results of a similar analysis presented by
Ogaji et al. (2002). It can be observed that these results are in
good accordance with the data derived from OREDA.

�%&%���#"�#-��.%�!%����#$!�"	��#"�#-
$%	�'�%$%"���	"��/	�	$%�%��

The assessment of gas turbine operating state to perform on
condition maintenance can be carried out by using Gas Path
Analysis techniques. In this manner, parameters that are indices of
the gas turbine health state (such as efficiencies, characteristic
flow passage areas and pressure drops along the gas path) are
determined by solving in inverse mode the mathematical model of
the gas turbine thermodynamic cycle starting from the
measurements available on the machine (Stamatis et al., 1990;
Bettocchi and Spina, 1999).

In fact, the measurable variables (m are a function of the
machine characteristic parameters ()) and of the parameters that
unequivocally determine the actual working point at which the gas
turbine is operating ((WP):

(m = f(), (WP) (1),

where 0 is a non-linear function that represents the mathematical
model of the gas turbine. However, the number and type of gas
turbine characteristic parameters that can be determined for each
operating point (i.e. for each set of (wp) depend on the number
and type of the available measured variables. In particular, the
number of characteristic parameters is generally equal to the
number of the (m measured variables. So, since the number of the
(m available measured variables is usually lower than the number
of the parameters that are indices of the gas turbine health state,
some of them have to be kept constant during the calculations.
(Bettocchi and Spina, 1999). Therefore, the parameter vector )
can be split into two parts, a vector of fixed parameters ()f) and a
vector of variable parameters ()v). The )v vector can be
determined as:

)v = F ((m, (WP, )f) = F (,) (2),

As can be seen, the solution )v of Eq. (2) is affected by
variations of (m and (WP (due, for example, to measurement
errors) and of )f. In fact, the parameters kept constant in the
calculation, may vary in the actual machine, for instance due to
the aging and deterioration of gas turbine components (Pinelli and
Spina, 2002).

The relative error on each variable parameter Xvj of the vector
)v due to these variations can be expressed as (Coleman and
Steele, 1989):
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where n is the number of the gas path measured variables and of
the variable parameters, t the number of working point measured
variables, s the number of the parameters kept constant and ϑij are
the sensitivity coefficients defined as ϑij = (Yi/Xvj)(�Xvj/�Yi).

In order to compare different measurement/parameter
combinations, the authors have introduced a “Reward Number”
(RN) defined as the inverse of the average-root-sum-square of the
errors on all the considered variable parameters. In the calculation
of RN all the relative variations ∆Yi/Yi were expressed in
percentage and assumed equal to 1, so that RN is independent of
∆Yi amounts, and is only dependent on the considered
measurement/parameter combination. Therefore, RN assumes the
following expression:
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The measurement/parameter combination characterized by the
greatest value of RN is the one for which the average-root-sum-
square of the errors on all the variable parameters is minimum.

However, not all the parameters indices of the gas turbine health
state have the same importance for the operating state assessment
of gas turbines. In fact, as shown in the previous section, each
failure presents a different probability of occurrence, and, so, the
characteristic parameters associated to the most probable failures
should be calculated with the highest accuracy.

To take into account this fact, a “Weighted Reward Number”
(RNw) has been introduced defined as:
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In the expression of RNw:
 the weights wj depend on the failure probability; the higher

is the weight, the higher is the criticality of the corresponding
characteristic parameter and, so, the higher is the desired
calculation accuracy;

 the combination factor fc is used to take into account the
presence (δj equal to 1) or the absence (δj equal to 0) of each Xj-th

parameter (j= 1,…, n+s) in a given variable parameter set �v.
��������	
 ��
 ���
 ������� The choice of the weights is

performed according to the probability that a failure may occur.
The methodology for weight selection consists of four steps:

1. Statistical analysis of failure occurrence to estimate their
incidence for the gas turbine under investigation, in terms of
typology and percentage incidence, as done in Tables 1, 2 and 3.

2. Assignment of GPA characteristic parameters Xj to each gas
turbine failure type, as shown in Table 4. Since Gas Path Analysis
techniques can only detect the gas-path failures that have
observable effects on the measurable variables (Ogaji et al., 2002),
some of the failures reported in Tables 1, 2 and 3, may not be
detected, i.e. they are not assigned to any characteristic parameter.
On the contrary, since some failures may affect more than one
parameter, the corresponding incidence was assigned to each
parameter. The only exceptions were the case of "Blade tip rubs"
reported in Table 1, for which the incidence was equally divided
between compressor and gas generator mass flow functions, and
the case of "Turbine" reported in Table 3, for which the incidence
was equally split between the gas generator and the power turbine.

3. Calculation of total failure incidence related to each GPA
characteristic parameter.

4. Calculation of the relative incidence for each characteristic
parameter, by normalizing failure incidence values so that the sum
makes one.

Table 5 shows the numerical results for the three analyzed
situations. In Sawyer and Hallberg (1980), the sum in the first
column is greater than 100 % since some failures are assigned to
more than one parameter. Failure incidences reported in the third
and in the fifth column of Table 5 are derived from Table 2 and 3,
respectively. It is interesting to notice that the results derived from
OREDA (1999) and Ogaji et al. (2002) are in good agreement
each other.

�	������
 ������ The RNw calculations performed consider
seventeen possible measurement/parameter combinations, chosen
among the most significant cases that can be encountered in
practice for a two shaft gas turbine with variable power turbine
nozzle (Pinelli and Spina, 2000; Pinelli and Venturini, 2001).

Table 4 Failure type and affected parameters

�������	��� �����	���������	��

�����
�	�
��������
������
Turbine blade failures ηggt, µggt

Impact of loose parts ηggt, µggt, ηpt, µpt

Compressor blade failures ηc, µc

Blade tip rubs µc (50 %), µggt (50 %)
Turbine nozzle failures ηggt, µggt

Combustor liner failure ηcc

� !"�
������
Compressor stator ηc, µc

Compressor rotor ηc, µc

Gas generator turbine ηggt, µggt

Combustion chambers ηcc

Burners/fuel nozzles ηcc

Power turbine rotor ηpt, µpt

Power turbine stator ηpt, µpt

���#�
��
���
�$��$�
Compressor ηc, µc

Gas Generator Turbine (50 % Turbine) ηggt, µggt

Power Turbine (50 % Turbine) ηpt, µpt

Fuel system ηcc

These combinations are reported in detail in Table A1 in the
Appendix. Table A2 in the Appendix shows the considered values
for the weights used to calculate RNw. First, a sensitivity analysis
with respect to any single parameter was performed (RNw

1

through RNw
7). Then, the sensitivity analysis was extended to the

main components: through RNw
8, RNw

9 and RNw
10, the critical

component is considered to  be the compressor, the gas generator
turbine and the power turbine respectively. Finally, the weights
used in RNw

11, RNw
12 and RNw

13 were chosen in accordance with
failure occurrence estimated through the statistical analysis that
was carried out above (Table 5). In particular, the weights used for
RNw

11 calculation were derived from Sawyer and Hallberg (1980),
the RNw

12 was referred to OREDA (1999) data and the RNw
13 was

obtained from Ogaji et al. (2002).

Table 5 Failure incidence and its relative frequency related to the characteristic parameters

�����
�	�
��������
������ � !"�
������ ���#�
��
���
�$��$�

�����	�
����	
�����
�
�

������
���	��
�	

�����������
������
�

������
��
���� 

��
!�
�	"

������
���	��
�	

�����������
������
�

������
��
���� 

��
!�
�	"

������
���	��
�	

�����������
������
�

������
��
���� 

��
!�
�	"

ηc 9.5 0.08 0.5 0.08 2.0 0.11

µc 12.3 0.10 0.5 0.08 2.0 0.11

ηggt 39.0 0.31 0.1 0.02 0.5 0.03

µggt 41.8 0.33 0.1 0.02 0.5 0.03

ηpt 10.5 0.08 0.4 0.06 0.5 0.03

µpt 10.5 0.08 0.4 0.06 0.5 0.03

ηcc 2.0 0.02 4.2 0.68 11.5 0.66

Total 125.6 1.00 6.2 1.00 17.5 1.00
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 ��%���
�	�
����%����	�� The best measurement/parameter set
should be identified for any given number and kind of available
measured variable set: this is the situation that can be encountered
in practice when a given instrumentation set is present on the
machine and the most appropriate parameter combination has to
be chosen. Furthermore, the analysis that was carried out should
lead to the identification of the most significant measurements
which would be useful to be performed in addition to the ones that
are already available.

In Figures 7 through 11, the results of the sensitivity analysis
are reported. In particular, Figures 7 through 10 allow the
determination of the best measurement/parameter combination in
order to calculate each single characteristic parameter with the
highest accuracy. In Figure 11, a similar analysis is developed on
a component-basis.

From the analysis of the figures, it can be observed that
 with four available measured variables no information can

be obtained about power turbine and combustor;
 when six measured variables are available, the absence of

Mf measurement (Case 15) is advisable for compressor, gas
generator and power turbine analysis (see Fig. 11), though
combustor efficiency ηcc can not be determined (see Fig. 10);

 if seven measurements are available, Case 17 is
recommended for the analysis of all single parameters and
components.

According to failure occurrence derived from Sawyer and
Hallberg (1980), OREDA (1999) and Ogaji et al. (2002), three
Weighted Reward Numbers (RNw

11, RNw
12 and RNw

13) for the
three weight combinations 11, 12 and 13 were calculated. For all
measurement/parameter combinations (Cases 1 through 17), the
results are reported in Figure 12. It can be noticed that:

 if four measured variables are available (Cases 1 and 2),
Case 2 (poc, Toc, Tot and VN instead of Mf) is the best
independently of the considered weight combination, in agreement
with Pinelli and Venturini (2001);

 if five measured variables are available (Case 3 to 6), Case 3
is the best, for all the three considered weight combinations;

 if six measured variables are available (Cases 7 to 15), the
best Case is 15 for all the three considered weight combinations;

 if seven measured variables are available, Case 17 is better
than Case 16. So, it seems better to have the inlet mass flow rate
measurement (Case 17) instead of Toggt measurement (Case 16) for
all the three considered weight combinations. Anyway, it should
be paid attention to the fact that Mic measurement accuracy may
be lower than the one for Toggt.
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efficiency
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Fig. 11 “Weighted” Reward Number 8, 9 and 10: compressor
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8), gas generator turbine (RNw
9) and power turbine (RNw

10)
respectively are considered the most critical components
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Fig. 12 “Weighted” Reward Number 11, 12 and 13: weights chosen according to failure occurrence taken from Sawyer and Hallberg (1980)
(RNw

11), from OREDA (1999) (RNw
12) and from Ogaji et al. (2002) (RNw

13)

'�&'()�*�&�
In this paper, a methodology to improve the reliability in gas

turbine health state determination has been developed, by
optimizing the choice of the best measurement/parameter
combination in accordance with the incidence of failures that
affect the gas turbine under investigation.

The analysis of failure incidence, performed through data
which were collected from bibliography and from ��� ��	
databases, allowed the determination of factors to weigh the
different possible measurement/parameter combinations.

For any given number and kind of available measured
variables, the best measurement/parameter set was identified. This
allows (i) the identification of the most appropriate parameter
combination with respect to a given instrumentation set and (ii)
the choice of the most significant measurements to perform in
addition to the ones which are already available on the gas turbine.

�'+&�,(!"-.!&/�
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APPENDIX

Table A1 - Measurement/Parameter combinations

Case Available measured variables Variable parameters Fixed parameter

1 poc, Toc, Tot, Mf ηc, µc,ηggt, µggt ηpt, µpt, ηcc, ∆pcc, Mcool

2 poc, Toc, Tot, VN ηc, µc,ηggt, µggt ηpt, µpt, ηcc, ∆pcc, Mcool

3 poc, Toc, Tot, Mf, VN ηc, µc, ηggt, µggt, ηcc ηpt, µpt, ∆pcc, Mcool

4 poc, Toc, Tot, Mf, VN ηc, µc, ηpt, µpt, ηcc ηggt, µggt, ∆pcc, Mcool

5 poc, Toc, Tot, Mf, VN ηc, µc, ηggt, ηpt, ηcc µggt, µpt, ∆pcc, Mcool

6 poc, Toc, Tot, VN, poggt ηc, µc, ηggt, µggt, ηpt µpt, ηcc, ∆pcc, Mcool

7 poc, Toc, Tot, Mf, VN, poggt ηc, µc, ηggt, µggt, ηpt, µpt ηcc, ∆pcc, Mcool

8 poc, Toc, Tot, Mf, VN, poggt ηc, ηggt, µggt, ηpt, µpt, ηcc µc, ∆pcc, Mcool

9 poc, Toc, Tot, Mf, VN, poggt ηc, µc, ηggt, ηpt, µpt, ηcc µggt, ∆pcc, Mcool

10 poc, Toc, Tot, Mf, VN, poggt ηc, µc, ηggt, µggt, µpt, ηcc ηpt, ∆pcc, Mcool

11 poc, Toc, Tot, Mf, VN, poggt ηc, µc, ηggt, µggt, ηpt, ηcc µpt, ∆pcc, Mcool

12 poc, Toc, Tot, Mf, VN, Mic ηc, µc, µggt, ηpt, µpt, ηcc ηggt, ∆pcc, Mcool

13 poc, Toc, Tot, Mf, VN, Mic ηc, µc, ηggt, µggt, µpt, ηcc ηpt, ∆pcc, Mcool

14 poc, Toc, Tot, Mf, VN, Mic ηc, µc, ηggt, µggt, ηpt, ηcc µpt, ∆pcc, Mcool

15 poc, Toc, Tot, VN, poggt, Mic ηc, µc, ηggt, µggt, ηpt, µpt ηcc, ∆pcc, Mcool

16 poc, Toc, Tot, Mf, VN, poggt, Toggt ηc, µc, ηggt, µggt, ηpt, µpt, ηcc ∆pcc, Mcool

17 poc, Toc, Tot, Mf, VN, poggt, Mic ηc, µc, ηggt, µggt, ηpt, µpt, ηcc ∆pcc, Mcool

Table A2 - Characteristic Parameters Weights
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c
w η 1 0 0 0 0 0 0 0.5 0 0 0.08 0.08 0.11

c
w µ 0 1 0 0 0 0 0 0.5 0 0 0.10 0.08 0.11

ggt
w η 0 0 1 0 0 0 0 0 0.5 0 0.31 0.02 0.03

ggt
w µ 0 0 0 1 0 0 0 0 0.5 0 0.33 0.02 0.03

pt
w η 0 0 0 0 1 0 0 0 0 0.5 0.08 0.06 0.03

pt
w µ 0 0 0 0 0 1 0 0 0 0.5 0.08 0.06 0.03

cc
w η 0 0 0 0 0 0 1 0 0 0 0.02 0.68 0.66


