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ABSTRACT
An intelligent performance diagnostic computer program of a

gas turbine using the NN(Neural Network) was developed.
Recently on-condition performance monitoring of major gas path
components using the GPA(Gas path Analysis) method has been 
performed in analyzing of engine faults. However because the
types and severities of engine faults are various and complex, it is 
not easy that all fault conditions of the engine would be monitored 
only by the GPA approach. Therefore in order to solve this problem,
application of using the NNs for learning and diagnosis would be 
required. Among them, a BPN (Back Propagation Neural Network)
with one hidden layer, which can use an updating learning rate, was 
proposed for diagnostics of PT6A-62 turboprop engine in this 
work.

In this study, in order to facilitate application of the NNs as 
well as to provide user-friendly circumstance a performance
diagnostic computer code using MATLAB® was newly proposed.
As a result, not only more precise and prompt analysis results could
be obtained due to use of the toolbox in MATLAB® on diagnosis
and numerical analysis, but also the GUI (Graphical User Interface)
platform could be realized.

The proposed engine diagnostics system is able to train the 
BPN with each fault pattern and then construct the total training
network by assembling the trained BPNs. Database for network 
learning and test was constructed using a gas turbine performance
simulation program.

In order to investigate reliability on construction of database
for diagnostic results, an analysis was performed with 5
combination cases of 40 fault patterns.

Finally a diagnostic application example for the PT6A-62
turboprop engine was performed using the trained network with
database, which represented the best diagnostic results among test
sets.

1. INTRODUCTION
Engine condition monitoring is an effective complex way to

improve safety as well as reduce operation and maintenance costs 
of gas turbines. To keep track of the health of various components 
that make up a modern aircraft engine, a large number of
monitoring and diagnostic techniques have to be applied. Among 
them, the GPA(Gas Path Analysis) is a kind of fault diagnostic
techniques that can be used to isolate and quantify gas path faulted
components of gas turbines. Some features of the GPAs are the 

capability to identify the component responsible for the loss of
performance, detect multiple faults and quantify the deterioration
affecting individual components. (Zedda & Singh, 1998) 

Performance diagnosis of major gas path components using 
the GPA can be carried out by independent parameters, (such as 
component efficiencies, mass flow parameters, etc.) and the
FCM(Fault Coefficient Matrix). Because the FCM, which is a
inverse matrix of the ICM(Influence Coefficient Matrix) that is
relationship between measurable dependent parameters (such as
pressure, temperature, fuel flow, etc.) and independent parameters,
is a non-square matrix, there might be some error to obtain the
inverse matrix due to numerical treatment. (Urban, 1972) 

Recently AI(Artificial Intelligence) and especially the
NN(Neural Network) techniques have been applied to gas turbine
engine diagnostics. The NNs have inherent features that make them
particularly suited to diagnostic tasks. (Lu et al., 2000, Sun et al., 
2000, Volponi et al., 2000, Depold & Gass, 1999)

Changes of measured parameters in engine gas path reflect the
change of component characteristics. If the interrelationship
between them can be built using the NN, the different types of
faults can be diagnosed. Lots of research works have been 
conducted on engine fault diagnosis using the NN, and several NN 
approaches have been developed. Among them, the BPN (Back
Propagation Network) is widely used because of its simplicity and
already made algorithm. (Sun et al., 2000, Zedda, 1998, Tang et al.,
1998)

The BPN was created by generalizing the Widrow-Hoff learning
rule to multiple-layer networks and nonlinear differentiable transfer
functions. Input vectors and the corresponding target vectors are
used to train to train a network until it can approximate a function,
associate input vectors with specific output vectors, or classify 
input vectors in an appropriate way as defined. Networks with
biases, a sigmoid layer, and a linear output layer are capable of
approximating any function with a finite number of discontinuities.
Backpropagation is a gradient descent algorithm, as is the
Widrow-Hoff learning rule, in which the network weights are
moved along the negative of the gradient of the performance
function. (Haykin, 1994) 

In order to reduce some difficulties of currently used BPNs for 
gas turbine engine diagnostics, this work proposed a method, which
is able to train the BPN with each fault pattern and then construct
the total training network by assembling the trained BPN. Fault and
test database to build the NNs were obtained using a gas turbine 
performance simulation program. In order to use easily the
proposed diagnostics system, a GUI(Graphical User Interface) 
program for constructing database, training, test and applying the
NNs was developed.
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2. THE DIAGNOSTIC SYSTEM WITH GUI
The proposed gas turbine engine diagnostic system consists of

construction of database for training the NN, learning the BPN, 
verification of the NN using test data, and application for a target
gas turbine engine. Figure 1 shows ‘main window’ for the proposed
diagnostic system.

Fig. 1 Main window for diagnostic system

In the stage of data base construction, a performance
simulation program calculates base engine performance and
measurable parameters for various faults. Engine performance
degradation is saved at a file through normalization using the
following equation. Figure 2 shows ‘in/out window’ for the stage of
data base construction.

Fig. 2 Window for database acquisition
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Where Zb is the value at the established baseline condition and
Z is the measured or calculated value respectively.

In the stage of training stage of the BPN, the training is
performed using input data (such as training error goal, number of
neurons in hidden layer, number of maximum iterations, etc.), and
database obtained in the previous stage. Figure 3 shows ‘in/out
window’ for the stage of training.

Fig. 3 Window for BPN training

In the stage of test and application at the target engine, the
types of faults and their severities are quantitatively indicated using 
the trained NN with input data such as test and measured data.
Figure 4 shows ‘in/out window’ for the stage of test and
application.

Fig. 4 Window for NN test/diagnosis

3. NEURAL NETWORK APPROACH TO GAS TURBINE
PERFORMANCE DIAGNOSTICS

An engine selected for diagnostics system is the P&WC
PT6A-62 free-turbine turboprop engine. The engine shaft 
horsepower is 857.9kW(1150 hp) at sea level, but flat rated at
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708.7kW(950 hp). Table. 1 shows the performance data at
maximum take-off condition, which were provided by the engine
manufacturer. (Kong & Ki, 2001)

Table. 1 Performance data by engine manufacturer
Variable Values

Atmospheric condition
Sea Level Static

Standard Condition 

Mass flow rate (kg/s) 4.18

Fuel flow rate (kg/s) 0.0818

Shaft horse power (hp) 1150

S.F.C (kg/kw hr) 0.3433

Gas generator rotational speed
(100% RPM) 

37468

Propeller rotational speed (100%
RPM)

2000

Measurable parameters for this model were SHP(shaft horse
power), MF(fuel flow), PT2(compressor exit pressure),
TT2(compressor exit temperature), PT4(compressor turbine exit
pressure), TT4(compressor turbine exit temperature), TT5(power
turbine exit temperature). Flow capacities and efficiencies of gas
path components were used for detection parameters for their
performance degradations. It means that the six performance
parameters, which are flow capacities and efficiencies of
compressor, compressor turbine and power turbine, used for
detecting single or multiple faults such as compressor fouling,
turbine erosion, and so on.

40 patterns of training data and 15 patterns of test data were
obtained using the performance simulation program of the
PT6A-62 turboprop engine. (Kong, 2001) Fault patterns for
training and test have various cases of compressor fouling, turbine
erosion, and simultaneously combined faults of gas path
components with the performance degradation range of 1% to 5%.

Learning algorithm used the BPN with one hidden layer. The
hidden layer used the tangent sigmoid transfer function, and the
output layer used the linear transfer function.

3-1. DATA SET CONSTRUCTION
Data set for learning was composed of 40 patterns of faults.

Compressor fouling causes decrease of both flow capacity and
efficiency, and it was considered that the degradation rate due to
this fault has the maximum range of 5%. However turbine erosion
causes increase of flow capacity and decrease of efficiency, and it
also was considered that the degradation rate has the maximum
range of 5% like the compressor fouling case. Various cases for
fault patterns were assumed that there are single fault pattern such
as compressor fouling, compressor turbine erosion or power turbine
erosion, and multi patterns with simultaneously combined faults. 

If variation rates of component flow capacities and
efficiencies are input at GUI window, each component performance
map is scaled by them. Therefore the engine performance can be
matched at a new operating point with this scaled map. After
measurement parameters (such as SHP, MF, P2, T2, P4, T4 and T5)
of the degraded engine are compared with them of clean engine and 
calculated using equation (1), they will be saved as a data file.

With the same procedure as construction of the learning data 
set, 15 patterns of faults were constructed for test data set. Table 2
shows fault patterns for learning data set. (Diakunchak, 1992) 

Where  is component flow capacity,  means component 
efficiency. Subscripts of CO, CT, PT present compressor,
compressor turbine, power turbine.

Table. 2 Fault patterns for learning data set 

CO CO CT CT PT PT

1 1 1 0 0 0 0
2 -2 -2 0 0 0 0
3 -3 -3 0 0 0 0
4 -4 -4 0 0 0 0
5 -5 -5 0 0 0 0
6 0 0 1 -1 0 0
7 0 0 2 -2 0 0
8 0 0 3 -3 0 0
9 0 0 4 -4 0 0
10 0 0 5 -5 0 0
11 0 0 0 0 1 -1
12 0 0 0 0 2 -2
13 0 0 0 0 3 -3
14 0 0 0 0 4 -4
15 0 0 0 0 5 -5
16 1 -1 1 -1 0 0
17 2 -2 2 -2 0 0
18 3 -3 3 -3 0 0
19 4 -4 4 -4 0 0
20 5 -5 5 -5 0 0
21 0 0 1 -1 1 1
22 0 0 2 -2 2 2
23 0 0 3 -3 3 3
24 0 0 4 -4 4 4
25 0 0 5 -5 5 5
26 1 -1 0 0 1 -1
27 2 -2 0 0 2 -2
28 3 -3 0 0 3 -3
29 4 -4 0 0 4 -4
30 5 -5 0 0 5 -5
31 -1 -1 1 -1 1 -1
32 -2 -2 2 -2 2 -2
33 -3 -3 3 -3 3 -3
34 -4 -4 4 -4 4 -4
35 -5 -5 5 -5 5 -5
36 -5 -3 3 -3 3 -3
37 -3 -2 2 -2 2 -2
38 -4 -2 1 -1 1 -1
39 -5 -3 2 -2 2 -2
40 -1 -1 2 -2 2 -2

3-2. NEURAL NETWORK TRAINING ALGORITHM
Fault patterns were trained using the BPN algorithm. The BPN 

consists of one input layer with 7 neurons, one hidden layer with
one neurons and one output layer with 6 neurons as shown in Figure
5. Seven neurons of the input layer mean variations of measurement
parameters such as SHP, MF, P2, T2, P4, T4 and T5, and 6 neurons
of the output layer present degradation rates of flow capacities and
efficiencies for compressor, compressor turbine and power turbine.

The tangent sigmoid function (2) was used as the transfer
function of the hidden layer, and the linear transfer function (3) was
applied as the transfer function of the output layer. (Lee & Mun
1999)
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Where e means exponential, y and x are output and input
values respectively.  is tangential parameter, and it was set as 1 in 
this work. 

Fig. 5 Architecture of three layer BPN

The BPN needs differential operation of the transfer function 
for effective calculation in the forward pass. Therefore differential
equations of tangent sigmoid and linear transfer functions are
respectively as follows. (Lee & Mun 1999) 

2][1 xfy   (4) 

1y   (5) 

In the NN learning process, in order to increase the learning
speed and maintain the stability the “learning rate factor”(LRF)
increases 10 % of the previous LRF if the errors between network
and goal outputs decrease, but the LRF decreases 50% of the
previous LRF if the errors increase. Moreover the weight factor was 
only updated in case of decrease of the errors. The errors is defined
as the following RMS(Root Mean Square).
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Where T is target output, y is output value calculated by the
NN, and n is the number of output layer neurons. In this work the
target maximum RMS error was set at 0.0001.

Fig. 6 RMS errors versus number of iterations

Figure 6 shows a trend that the network output is converging
to the target output for the 40th fault pattern.

4. NETWORK VALIDATION
Test data set composed of 15 fault patterns was used to

validate the learned NN. Test set consists of various types and
severities of component faults similar to data sets for learning.
Table 3 presents the applied test data set for validation.
(Diakunchak, 1992)

In order to investigate influence on construction of database
for diagnostic results, an analysis was performed with 5
combination cases, which were derived from 40 fault patterns.
Table 4 shows 5 combination cases for database and their RMS
errors.

From diagnostic results, it is noted that the case I with all 40
fault patterns at Table 2 has much greater RMS errors rather than
the cases with partial fault patterns. It means that unnecessary data 
may have inaccuracy diagnostic results inversely. The case II is the
results that train the data set using the fault pattern number 1 to 15
at Table 3. These are various types that single fault occurs at each
component. It is found that the case II have much less errors rather
than the case I including multi-fault types.

Table. 3 Fault patterns for NN validation 

CO CO CT CT PT PT

1 -2 -2 0 0 0 0
2 -3 -1 0 0 0 0
3 0 0 2 -1 0 0
4 0 0 3 -2 0 0
5 0 0 0 0 2 -1
6 0 0 0 0 3 -2
7 0 0 2 -2 1 -1
8 0 0 3 -1 3 -2
9 -3 -1 2 -1 0 0

10 -3 -2 1 -1 0 0
11 -3 -1 0 0 2 -1
12 -3 -2 0 0 2 -2
13 -3 -2 2 -2 2 -2
14 -2 -1 1 -1 1 -1
15 -3 -1 2 -1 2 -1

Table. 4 RMS errors for each learning database sets 
CASE I CASE II CASE III CASEIV CASE V

1 14.935 3.3754 1.9546 1.1734 0.8399
2 14.989 3.3306 1.9488 1.1821 0.8974
3 14.913 3.1191 1.8329 0.8771 2.1929
4 14.603 2.8150 1.8311 1.0011 2.4896
5 14.878 3.3486 1.6566 1.6107 2.0840
6 14.531 3.2175 1.5552 1.9508 2.3483
7 14.399 2.6225 1.4249 1.0443 2.3386
8 14.032 2.5476 1.0592 1.6933 2.5541
9 14.489 2.6804 1.5698 0.6331 1.3279
10 14.516 2.8639 1.7074 0.9074 0.8162
11 14.439 2.9453 1.3681 1.5110 1.1620
12 14.108 2.8278 1.4067 1.6594 1.1662
13 13.425 1.7538 0.8095 1.3505 1.6573
14 14.367 2.6173 1.1718 0.7678 1.3329
15 13.932 2.1884 0.7452 1.1378 1.5194

The case III is the result that trains the data set using the fault
pattern number 3, 4, 8, 9, 13 and 14 with component performance
degradation rates of 3 and 4%, and the case IV is the result that
learns the data set using the fault pattern number 1, 5, 6, 10, 11 and
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15 with component performance degradation rates 1 and 5%. As a
result of comparison, it is shown that have less RMS errors than the
case II, the case III and the case IV with wide degradation rates has 
the smallest RMS errors.

Finally, the case V constructs learning set using the fault
pattern number 1, 2, 3, 4 and 5 (only compressor fouling). This case 
can detect well the compressor fouling pattern, but it has big RMS
errors for other single and multi component fault patterns.

In this test, in order to get better diagnostic results, firstly it
was confirmed that unnecessary database may give rise to reduce
the diagnostic reliability, inversely. Secondly, the case using the
learning database for single component fault patterns has much 
higher reliability than that for multi component fault patterns, and
thirdly, the case using wide range of performance degradation rates
has much better than that using narrow range of performance 
degradation rates. Finally the learned case with a single component
fault pattern can detect precisely the same component fault pattern,
but it can detect well the other component fault patterns.

Figure 7 and 8 show respectively application results for
diagnostics of the PT6A-62 turboprop engine. Because diagnostic
results show reduction of both flow capacity and efficiency of
compressor as shown in Figure 7, it can be found that cause of fault
is compressor fouling.

Fig. 7 Application results of the case IV network 

Because Figure 8 shows decrease of both flow capacity and
efficiency at compressor as well as increase of flow capacitiy and
decrease of efficiency at compressor turbine, it presents that causes
of combined faults are compressor fouling and compressor turbine 
erosion.

Fig. 8 Application results of the case IV network 

5. CONCLUSION REMARKS
In this work, a performance diagnostics system for a gas 

turbine was newly proposed using the NNs. The proposed 
diagnostics system was composed with the basis of the GUI
platform, which users can use easily for construction of data base, 
training, test and even application of the NNs.

For learning the NN, a BPN with one hidden, one input and
one output layer was used. The input layer had seven neurons of
variations of measurement parameters such as SHP, MF, P2, T2, P4,
T4 and T5, and the output layer used 6 neurons of degradation
ratios of flow capacities and efficiencies for compressor,
compressor turbine and power turbine. The tangent sigmoid
function was used as the transfer function of the hidden layer, and
the linear transfer function was applied as the transfer function of
the output layer. After obtaining 55 fault patterns using the
performance simulation program of PT6A-62 turboprop engine, 40
patterns were used for network training, and 15 patterns were
applied for network validation. 

In order to investigate reliability on construction of database
for diagnostic results, an analysis was performed with 5
combination cases of 40 fault patterns. From analysis results, in
order to get better diagnostic results, firstly it was confirmed that
unnecessary database might give rise to reduce the diagnostic
reliability, inversely. Secondly, the case using the learning database 
for single component fault patterns had much higher reliability than
that for multi component fault patterns, and thirdly, the case using 
wide range of performance degradation rates had much better than
that using narrow range of performance degradation rates. Finally
the learned case with a single component fault pattern could detect 
precisely the same component fault pattern, but it could detect well 
the other component fault patterns.

From application results for diagnostics of the PT6A-62 
turboprop engine using the learned networks, it was confirmed that
the proposed diagnostics systems could detect well the single fault
types such as compressor fouling, compressor turbine erosion and
power turbine erosion as well as multi component combined fault
types.
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