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ABSTRACT 
     This work deals with the use of Artificial Neural Networks 
(ANNs) for fault diagnosis of a medium-size industrial gas turbine. 
One healthy and ten faulty engine conditions have been simulated 
in order to produce a comprehensive and realistic data set, which is 
used for training and validation of the ANNs. After the learning 
process is over, the ANN is able to make a diagnosis about the gas 
turbine’s condition when new data (not used during training) is 
presented to it. The data presented to the ANN system include only 
parameters that are actually measured in the real engines. The 
results obtained in this investigation show that an ANN-based fault 
diagnosis system is capable of fault isolation and identification with 
high reliability. Furthermore, the system is also able of identifying 
many fault types at an early stage, before they are fully developed 
and become obvious. 
 
NOMENCLATURE 
 
Alphabetical order 
ANN  Artificial Neural Network. 
C Compressor. 
CCh Combustion chamber. 
F Transfer function. 
F1, F2, etc. Fault 1, fault 2, etc. 
FL Fault level. 
FN Turbine capacity (Flow Number). 
GPA Gas Path Analysis. 
GT Gas Turbine. 
H Number of hidden neurons also healthy operational 

condition. 
H.I. Human intervention. 
IGV Inlet Guide Vane. 
IT Information Technology. 
LHV Lower Heating Value. 
MLP Multi-Layer Perceptron.  
M Number of inputs to the ANN. 
m Mass flow. 
mp Missclassified points. 
N  Number of outputs from the ANN. 
o ANN-output. 
OEM Original Engine Manufacturer. 
p Pressure. 
P Power. 

s Weighted input to the transfer function. 
T Temperature also Turbine. 
TR Target Ratio. 
x Input signal to the ANN. 
y  Output signal from the ANN. 
w  Weight connection 
 
Greek symbol  
∆ Difference, drop. 
η Isentropic efficiency. 
  
Subscripts 
C Compressor. 
CCh Combustion chamber. 
f Fuel. 
h Hidden layer. 
i Arbitrary node in the input layer. 
j Arbitrary neuron in the hidden layer. 
k Arbitrary neuron in the output layer. 
lim Limiter (firing temperature). 
o Output layer. 
out Output (Power). 
T Turbine. 
0 Ambient condition also bias. 
2 Compressor inlet. 
3 Compressor outlet. 
65 Turbine outlet. 
 
INTRODUCTION 
     Modern gas turbines have highly-loaded components in order to 
reach the economic goals imposed by the liberalized energy market 
of today. This situation leads to increased risk for malfunctions, as 
well as faster degradation of the engine’s performance. Since the 
owners of the plant are interested in avoiding these faulty 
conditions, major revisions and maintenance work are carried out 
on a regular basis. Eventually, when a particular damage occurs or 
the performance degradation reaches a certain limit value, 
measures must be taken, e.g. compressor washing, reparation of a 
component, or replacement of the damage one by a spare part. 
These kinds of actions are very costly, but also down-time of the 
plant results in an economic punishment. 
     Advanced data acquisition and control systems are already 
available in most modern power plants. Furthermore, other modern 
IT-based solutions are being introduced to help broaden the 
economic margins; solutions which are considered as “high value, 
low cost” tools (Morton, 2002). Artificial neural networks (ANNs), 
a group of algorithms originated within the field of artificial 
intelligence, have been identified to be that kind of tool. 
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     ANNs are not programmed; they learn from experience instead 
(Massie, 2001). The knowledge is extracted from data that is 
collected from the analyzed system, and then the ANN is able to 
find the patterns that rule the relationships between the inputs and 
the outputs of the system without previous physical knowledge 
about the system itself. ANNs have the advantage of handling 
multidimensional nonlinear systems, and therefore they have been 
widely used e.g. for function approximation and classification tasks. 
ANNs have become popular in many engineering applications, and 
now they are also being used in power plant technology for tasks 
that are difficult to solve with traditional techniques (Assadi et al., 
2001), (Mesbahi et al., 2001), (Arriagada et al., 2002) and 
(Arriagada et al. 2003). Fault diagnosis of an industrial gas turbine 
is one of the fields where ANNs can be applied advantageously. 
 
BRIEFLY ABOUT ANNs 
     ANNs are inspired by our present model of the human brain, 
however, they are by no means representations of the same. Similar 
to the biological nervous system, an ANN distributes the incoming 
data into several parallel-connected simple units (called artificial 
neurons) within which the data is processed. Owing to their high 
connectivity and parallelism, ANNs are able to perform non-linear 
mapping of a multidimensional input space onto another 
multidimensional output space. The computational speed becomes 
higher, making ANNs suitable for complicated tasks that require 
rapid response, e.g. real-time processing of several simultaneous 
signals. A deeper explanation of the theory of ANNs can be found 
in the textbook by Haykin (Haykin, 1999). 
     The type of ANNs used in this work is the feed-forward 
multilayer perceptron (MLP), in which the data flows strictly 
forward all through the network. MLPs are formed by one input 
layer, one or more hidden layers and one output layer, with a set of 
adaptable parameters, i.e. the synaptic weight connections, in 
between each pair of layers. The information from the system to be 
modeled is collected in the input layer, but no signal processing 
occurs here. All the processing occurs in the hidden and the output 
layers by means of superposition and transformation of the 
weighted signals. It has been shown that it is enough to have one 
hidden layer with a continuous sigmoidal transfer function to carry 
out multi-dimensional non-linear mapping of any continuous 
function; only the number of hidden neurons is increased (Cybenko, 
1989). Consequently, only MLPs with one hidden layer with the 
log-sigmoid transfer function (F) are considered in this study. Eq. 
(1) presents the log-sigmoid function used here. 
 

( ) se1
1s −+

=F           (1) 

 
     Where, s: weighted input to the transfer function. 
 
     Before the ANN can make any meaningful mapping, it must be 
trained. The training of the MLP requires that a data set for which 
the targets are known is available (supervised learning). This data 
set is usually divided into three portions: one for training, a second 
for validation during training, and a third for testing the ANN after 
the learning is over. The data is normalized between 0.2 and 0.8 (in 
order to improve the extrapolation capacity of the network), and 
therefore the results obtained must be de-normalized. The most 
common method for training MLPs is the backpropagation 
algorithm, popularized in the 1980’s (Rumelhart et al., 1986). The 
principle is to present inputs (x) to the ANN and then compare the 
generated outputs (y) with the desired target values. If they differ 
from each other, i.e. if there exists an error, then the weights (w) are 
adjusted implementing gradient descent in weight space. A 
step-by-step explanation of this method can be found in (Arriagada, 
2001). During the training process, the MLP learns the internal 
representations for the training data and once the training is over, 
this information is stored in the weights; i.e. they are the long-term 

memory of the ANN. The ANN is now able to make predictions 
when new input patterns are presented to it.  
     The topology of the MLP is such that every input node 
corresponds to an input parameter and every output neuron 
corresponds to an output parameter. This allows the representation 
of the individual outputs from the network by the generic 
expression shown in Eq. (2). 
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     Where,  Fh: transfer function in the hidden layer; 
 Fo: transfer function in the output layer; 

H: number of hidden neurons; 
M: number of input nodes; 

 N: number of output neurons; 
k = 1 … N. 

  
     The parameters wj0 and wk0 are not weights, they are offsets or 
biases. For practical reasons they are treated as weights and 
determined through the same adjustment process. 
     H is usually tuned by trial-and-error in order to obtain the best 
performance from the ANN at a reasonable training time. After the 
network is trained, it is tested with a portion of the available data 
from the simulations not used during the training process in order to 
evaluate its generalization ability. 
 
THE SELECTION AND SIMULATION OF THE FAULTS  
 
The gas turbine engine 
     The gas turbine studied is a mid-size industrial engine conceived 
for continuous operation, either as a stand alone power unit or in a 
combined cycle. This single-shaft engine is also suitable for 
cogeneration applications and presents very low NOx emissions. 
 
Selection of the faults 
     A list with frequent faults in industrial gas turbines was put 
together with the experts from the engine manufacturer company 
(ALSTOM Power Sweden AB). It was accorded that the faulty 
conditions to be simulated for this study have to fulfill the 
following criteria: 
 

a. To represent realistic conditions habitual in industrial gas 
turbine engines. 

b. To be distributed over the main components of the engine, 
i.e. compressor (C), combustion chamber (CCh) and turbine 
(T). 

c. To include both usual deterioration of the engine 
performance and engine faults. 

 
     Of course, an ultimate condition must be satisfied, namely that 
the faults can actually be simulated with the available tools in a 
realistic way.  
 
Simulation of the faults 
     The healthy and faulty conditions were simulated with two 
advanced software tools developed by the OEM for modeling and 
simulation of the engine’s heat and mass balances (performance 
deck), as well as advanced 1- and 2-D turbine calculations (Genrup, 
2003). All calculations are performed with the real firing 
temperature control algorithm in order to take into account the 
influence that the control system may have in some operational 
cases. 
     In the performance deck, main parameters of the gas turbine 
components were manipulated by applying deltas (i.e. relative 
changes) and factors in order to obtain the desired behavior. This 
process was carried out based on the experience and knowledge 
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possessed by expert engineers at the company. Some of the 
manipulated parameters are: 
 

• Compressor inlet mass flow (m2); 
• Compressor isentropic efficiency (ηC); 
• Combustor section pressure drop (∆pCCh); 
• Turbine isentropic efficiency (ηT); 
• Turbine capacity (FN); 
• Different air cooling flows in the turbine. 

 
     Several sets of data were generated for varying engine-load (100, 
90, 80 and 70%) and ambient temperature (-30, -10, 10 and 30°C). 
It is known from a previous study that the effect of the ambient 
pressure (p0) is linear and the effect of the relative humidity of the 
air is rather small (Assadi, 2001). Therefore, these two figures were 
not varied in the present study and they were assumed to be 1.013 
bar and 60%, respectively. The fuel was assumed to be natural gas 
(LHV = 46800 kJ/kg). 
 
Different fault levels 
     All the selected faults were simulated at five different fault 
levels (FLs), spanning from fully developed (100% FL) down to 
incipient fault (20-33% FL). The idea was to test the capability of 
the ANN to diagnose faults that are just partially developed. All 
these faults imply an economic loss for the plant owner when they 
occur, thus a tool that can generate a warning as early as possible is 
highly interesting. Lots of efforts have been put into the 
development of techniques to diagnose such faults successfully, 
including gas path analysis (GPA), which is the traditional one for 
this aim today (Doel, 1994). 
     Table 1 below presents the selected faults and the gas turbine 
components that mainly are related to or affected by the faults. The 
FLs considered are 25 (alternatively 20 or 33), 50, 66, 80 and 100% 
developed faults. 
 
 
     Table 1. The selected faults, their distribution over the engine  

sections and the simulated fault levels. 
GT-section 

affected Fault Description 
C CCh T 

FL (%) 

F1 Compressor fouling X   20, 50, 66, 
80, 100 

F2 Compressor tip rubbing X   33, 50, 66, 
80, 100 

F3 Air path into combustor section 
partly blocked  X  25, 50, 66, 

80, 100 

F4 Sealing diaphragm leakage (in 
front of 1st stage vane)  X X 25, 50, 66, 

80, 100 

F5 Cooling air leakage from 
mid-pressure level into turbine X  X 20, 50, 66, 

80, 100 

F6 Worn central casing sealing  X X 25, 50, 66, 
80, 100 

F7 Vane 1 showerhead erosion   X 25, 50, 66, 
80, 100 

F8 Blocked cooling air channels 
stage 1   X 20, 50, 66, 

80, 100 

F9 Turbine blade trailing edge 
erosion   X 33, 50, 66, 

80, 100 

F10 Turbine blade aging   X 33, 50, 66, 
80, 100 

 
 
The final data set 
     The resulting data files from simulations, including all the 
thermodynamic data for each station in the engine for every single 

case, were very extensive. Not all of this data was utilized for 
training the ANNs, thus only the parameters which are actually 
measured in the real engine were considered for accomplishing as 
realistic conditions as possible (See Fig. 1). These parameters are: 
 

• Ambient temperature (T0); 
• Inlet Guide Vane angle (IGV); 
• Compressor inlet mass flow (m2); 
• Compressor inlet pressure (p2); 
• Compressor outlet pressure (p3); 
• Compressor outlet temperature (T3); 
• Fuel mass flow (mf); 
• Combustion section pressure drop (∆pCCh); 
• Turbine outlet pressure (p65); 
• Turbine outlet temperature (T65); 
• Mid-pressure cooling air pressure drop in strainer (∆pstrainer); 
• Power output (Pout). 

 
     Additional parameters included in the ANN study were those 
that can be controlled by the operators or by the control system, 
e.g.: 
 

• Engine load; 
• Firing temperature limiter (Tlim). 
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     Fig. 1 Schematic drawing of the gas turbine showing the main  

components and the measured parameters. 
 
 
ANN SYSTEM FOR FAULT DIAGNOSIS 
 
The distribution of the operational data for training the ANNs 
     The approach adopted in this study was to extract data from the 
simulation results of the healthy operational condition as well as the 
ten different faulty conditions described in Table 1. It must be noted 
that only data for full grown faults (100% fault level, FL) was 
included in this group designated for the ANN’s learning process. 
Each operational condition was represented by 16 operational 
points, i.e. 176 operational points in total. 
     Half of the data (i.e. 88 points) was randomly chosen and used 
for the training process, and another 26 points, also randomly 
chosen, were used for cross-validation. To determine the optimal 
length of the learning process, the method of early stopping was 
applied. In this method the network training goes on until the 
cross-validation error (which is continuously monitored) starts to 
increase. Then the weights were frozen and the resulting ANN was 
confronted with an independent test set (the remaining 62 
operational points) in order to check the diagnostic performance on 
“unseen” data. 
     The performance of the resulting neural network is expressed as 
a target ratio (TR), defined as the percentage of right identified 
conditions of the total, see Eq. (3). 
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Fault diagnosis with early warning of emerging faults 
     A system that can deliver early warnings for emerging faults 
would be important in avoiding major damages; therefore the 
diagnostic capability of the ANNs on partially developed faults was 
investigated. For this purpose, another four data sets with partially 
developed faults were extracted from the simulation results. The 
first data set contains 160 data points (16 points for each faulty 
condition) for incipient faults (20 to 33% FL). The second data set 
also contains 160 data points (once again 16 for each fault) for half 
developed faults (50% FL). In similar way, the third and the fourth 
data sets contain 160 points each corresponding to 66 and 80% FLs, 
respectively. It must be emphasized that these four data sets were 
not used during the learning process; however, the ANN was tested 
with them. 
 
Description of the ANN-based fault diagnosis system 
     The ANN-architecture is determined by the selection of the 
inputs, the outputs and the number of hidden neurons. The inputs 
are determined to correspond to the measured parameters in the real 
engines, as well as the ones controlled by the operators and the 
control system, i.e.: T0, IGV, m2, p2, p3, T3, mf, ∆pCCh, p65, T65, 
∆pstrainer, Pout, load, Tlim. As can be seen, 14 input parameters are 
considered. 
     The number of hidden neurons is varied within a wide range, 
repeating the training of ANN for each value adopted by H. Finally, 
the weights for the network with the best performance are saved. 
     The desired outputs from the ANN are unique combinations of 
28 binary numbers that are arranged in graphical display as shown 
in Figure 2.  
     The ANN can then be named according to its structure, i.e. 
14-H-28. 
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     Fig. 2 Schematic drawing of the ANN and the interpretation of  

the outputs in a graphical display. 
 
 
     The output value “1” gives a black bite and the output value 
“zero” gives a white bite in the display, thus building signs that 
show the different operational conditions of the engine according to 
the key presented in Table 2 below. 
     However, the real outputs from the ANN are not binary numbers 
as the desired ones, they are real numbers between 0 and 1. 
Therefore the following filter is applied in order to translate them 
into a sign in the display: 
  
If output > 0.6 then output = “black”, else 
     If output < 0.4 then output = “white”, else 
          output = “grey” 

     This graphical method permits human interaction with ANN in 
the fault detection process. It also introduces more flexibility to the 
system because it lets the operator discern in the cases that are not 
clearly classified by the ANN from the beginning. The three-color 
map is especially favourable for this purpose. This added flexibility, 
together with the inherent pattern recognition capacities of neural 
networks, is expected to allow the detection of emerging faults and 
those not full developed. 
 
 
     Table 2. Desired binary outputs and their interpretation. 
Operational 
Condition 

Desired output 
(binary combination) 

Sign 
displayed 

Healthy 1001-1001-1001-1001-1111-1001-1001 H 
Fault 1 0100-1100-0100-0100-0100-0100-1110 1 

Fault 2 0110-1001-0001-0010-0100-1000-1111 2 

Fault 3 1110-0001-0011-0001-0001-0001-1110 3 

Fault 4 1010-1010-1111-0010-0010-0010-0010 4 

Fault 5 1111-1000-1110-0001-0001-0001-1110 5 

Fault 6 0010-0100-1000-1110-1001-1001-0110 6 

Fault 7 1111-1001-0001-0010-0010-0100-0100 7 

Fault 8 0110-1001-1001-0110-1001-1001-0110 8 

Fault 9 0110-1001-1001-0111-0001-0010-0100 9 

Fault 10 0100-1010-1010-1010-1010-1010-0100 0 
 
 
RESULTS AND COMMENTS 
     The main results from the fault diagnosis with this ANN-based 
method are presented in Tables 3, 4 and 5 both as a TR in % and as 
the number of missclassified points (mp). The best results were 
achieved by an ANN with a structure of 14-27-28 (i.e. H = 27).  
     In Table 3 is shown the performance of this ANN on the training, 
cross-validation and test data sets. The results are shown both 
without and with human intervention (H.I.). From the table it can be 
seen that the ANN has excellent prediction capacity for the 
operational conditions included in this data group, i.e. healthy and 
fully grown faults (100% FL). The performance of the ANN on the 
total data set (at the different FLs) is presented in the subsequent 
tables.  
 
 
     Table 3. Performance of ANN 14-27-28 on the data used during  

the learning process. 
Without H.I. With H.I. 

TR 
mp % mp % 

Training 0 100 0 100 
Cross-validation 0 100 0 100 
Test 1 98.4 0 100 
Tot. 1 99.4 0 100 
 
 
     When no H.I. is allowed, the performance of the ANN is very 
good on fully developed faults (100% FL) and acceptable on most 
of the faults at FL 80%, except F3 which turned out to be difficult to 
predict in all the calculations run. At FL 66%, the performance of 
the ANN further deteriorates reaching a poor average TR of just 
62%, but there are still a couple of faults that can be recognized 
without problems, namely F8 and F10. At 50% FL the faults are not 
detected in major extends and at the lowest FL they are not detected 
at all. See Table 4 for details. The reason for the disparity in the 
recognition of some faults from one FL to the other is that the 
control system is very effective in counteracting the symptoms of 
some partly developed faults (e.g. F9), at least until a certain level. 
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When this level is exceeded, then the ANN can discover the fault. 
     The same neural network, 14-27-28, shows a dramically 
improved performance when H.I. is allowed. With H.I., the 
diagnosis of fully blown faults and at FL 80% is excellent. At FL 
66% there is still an acceptable TR, with the exceptions of F1 and 
F3 that are still difficult to predict at lower FLs. At 50% FL, the TR 
has dropped to 42.5% and at the lowest FL, human intervention 
makes no major difference. See Table 5 for details. 
 
 
     Table 4. Performance of ANN 14-27-28 on all the operational  

conditions without human intervention. 
FL 0% 20,25,30% 50% 66% 80% 100% 
TR mp % mp % mp % mp % mp % mp % 
H 0 100           
F1   16 0 16 0 10 37.5 5 68.8 0 100
F2   16 0 12 25 4 75 1 93.8 0 100
F3   16 0 16 0 16 0 15 6.3 0 100
F4   16 0 16 0 8 50 1 93.8 0 100
F5   16 0 16 0 6 62.5 2 87.5 0 100
F6   16 0 9 43.8 5 68.8 1 93.8 0 100
F7   16 0 16 0 7 56.3 2 87.5 0 100
F8   16 0 16 0 0 100 0 100 0 100
F9   16 0 11 31.3 5 68.8 1 93.8 1 93.8

F10   16 0 14 12.5 0 100 0 100 0 100
Tot. 0 100 160 0 142 11.3 61 61.9 28 82.5 1 99.4
 
      
     Table 5. Performance of ANN 14-27-28 on all the operational  

conditions with human intervention. 
FL 0% 20,25,30% 50% 66% 80% 100% 
TR mp % mp % mp % mp % mp % mp % 
H 0 100           
F1   16 0 14 12.5 7 56.3 2 87.5 0 100
F2   15 6.3 6 62.5 1 93.8 0 100 0 100
F3   16 0 16 0 16 0 2 87.5 0 100
F4   16 0 16 0 3 81.3 0 100 0 100
F5   16 0 8 50 0 100 0 100 0 100
F6   16 0 6 62.5 1 93.8 0 100 0 100
F7   16 0 7 56.3 0 100 0 100 0 100
F8   16 0 3 81.3 0 100 0 100 0 100
F9   15 6.3 8 50 0 100 0 100 0 100

F10   15 6.3 8 50 0 100 0 100 0 100
Tot. 0 100 157 1.9 92 42.5 28 82.5 4 97.5 0 100
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     Fig. 3 The displayed ANN-outputs and the interpretation by the  
               operator for fault No.2 (at 90% engine load and T0=30°C)    
               and fault No.5 (at 100% engine load and T0=10°C). 

     In order to clarify how human intervention is accomplished, 
Figure 3 above shows a couple of practical examples of the 
displayed ANN-outputs for two specific operational conditions 
(namely fault No.2, at engine load 90% and T0 = 30°C and fault 
No.5 at engine load 100% and T0 = 10°C). In the figure it can be 
appreciated how the ANN output changes during the fault 
development sequence and the observations made by an 
hypothetical operator are included. For instance, fault No.2 
becomes evident to the operator at FL 80%, while fault No.5 can be 
clearly distinguished already at FL 50%.  
     Another interesting aspect of the diagnostics results is revealed 
at a closer look at the ANN-outputs: the fault diagnosis capability 
of the ANN is deteriorated at part-load engine operation. This 
situation is shown in Table 6, where it can be appreciated that at FL 
100%, 80% and 66%, the TR is lower at part-load than at full-load. 
This effect is partly remediated when the fault diagnosis with H.I. is 
applied. The performance of the ANN is improved at all FLs and at 
all gas turbine loads, as shown in Table 7. 
 
 
     Table 6. Performance of ANN 14-27-28 at part-load and  

full-load operation without human intervention. 
FL 0% 20,25,30% 50% 66% 80% 100% 
TR mp % mp % mp % mp % mp % mp % 

load 70% 0 100 40 0 34 15 21 48 11 73 1 98 

load 80% 0 100 40 0 35 13 13 68 6 85 0 100

load 90% 0 100 40 0 37 7.5 16 60 7 83 0 100

load 100% 0 100 40 0 36 10 11 73 4 90 0 100

 
 
     Table 7. Performance of ANN 14-27-28 at part-load and  

full-load operation with human intervention. 
FL 0% 20,25,30% 50% 66% 80% 100% 
TR mp % mp % mp % mp % mp % mp % 

load 70% 0 100 38 5 24 40 10 75 2 95 0 100

load 80% 0 100 39 2.5 21 48 6 85 1 98 0 100

load 90% 0 100 40 0 24 40 7 83 0 100 0 100

load 100% 0 100 40 0 23 43 5 88 1 98 0 100

 
 
CONCLUSIONS 
     The selected neural network (14-27-28) performs very well 
when diagnosing fully developed faults as well as healthy 
conditions. Therefore, this network is selected to be the keystone of 
the ANN-based diagnosis system that allows the operator to 
interact with the ANN, thus improving the overall performance. On 
fully developed faults as well as healthy conditions the TR is 100%. 
On partially developed faults the performance is good (97.5% at 
80% FL and 82.5% at 66% FL). On more incipient faults, this 
diagnosis capacity becomes poorer (42.5% at 50% FL and 2% at the 
lowest FL). 
     One of the main reasons for the lower target ratios here is that 
the control system of the engine compensates for the symptoms of 
partly developed faults very effectively. At part-load, the ANN 
fault-diagnosis capability is also affected by the non-linear 
behavior of some componenents (e.g. compressor and turbine). 
Summarizing, the following points can be made: 
  

• Neural networks are useful tools that can be utilized for 
diagnostics purposes in an industrial gas turbine. 

• At part-load, the fault diagnosis is difficulted by non-linear 
behavior of some gas turbine components. 

• Human intervention makes the diagnosis process more 
flexible and expands its recognition capability, both at 
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part-load conditions and at full-load operation. 
• Early detection of partially developed faults by the ANN 

can be used to generate early warnings and implement 
corrective actions in good time. 
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