日本財団 図書館

共通ヘッダを読みとばす


Top > 産業 > 運輸.交通 > 成果物情報

Conference Proceedings Vol. I, II, III

 事業名 海事シミュレーションと船舶操縦に関する国際会議の開催
 団体名 日本船舶海洋工学会 注目度注目度5


PREDICTION OF TEE SLEW MOTION FOR A SHIP MOORED IN IRREGULAR WAVES
Seung Keon Lee (Pusan National University, KOREA)
Hyo Jae Jo (Korea Maritime University, KOREA)
Dong Hoon Kang (Pusan National University, KOREA)
 
 Abstract: A time domain analysis of the motion of a single point moored ship in regular and irregular waves is presented. Linear and nonlinear wave forces are calculated by the convolution integrals of the impulse response functions and wave elevations. 3-D panel method is applied to get the linear and quadratic frequency transfer functions of wave forces on the vessel. It is shown that the consideration of first and second order wave forces is important in the calculation of the slew motion(of a moored ship) in irregular waves.
 
1. INTRODUCTION
 It is important to predict and control the excessive lateral motion of a moored ship in wind, waves or currents, to prevent the dredging of anchor or collision with other ships. Many researchers like Fujino [1], Obokata [2], Kijima [3] proposed the prediction and reduction methods of such motion. McWilliam et al [4] considered the first and second order wave forces on a single point moored ship. Jiang et al [5] calculated the motion of a single point moored tanker subjected to current, wind and waves. In this paper, the authors tried to calculate the effect of irregular waves, in the slew motion of a moored ship. At first, linear and quadratic frequency transfer functions of wave forces are calculated by 3-D panel method. These transfer functions are Fourier transformed to get the impulse response functions. Irregular waves are reproduced with use of ISSC spectrum, and the convolution integrals of irregular wave and impulse response function are carried out to get the wave forces in time domain. M.M.G maneuvering equations are used to simulate the motion of a ship[6]. Inoue [7] formulas are applied to predict the hull forces, and the tension of mooring line is calculated under catenary assumption.
 
2. EQUATION OF MOTION
 Surge, sway and yaw motion of a ship in regular or irregular waves are expressed by equation (1). Figure 1 shows the coordinate system and definition of each parameters.
 
 
Fig.1. Coordinate system
 
 Here, the subscript H, WV, T means hull forces, wave forces and tension of mooing line. Hull force XH , YH, NH are predicted by the Inoue formulas, and the added masses and moments are gotten from the Motora chart [8].
 
3. CALCULATION OF WAVE FORCES
 In this paper, KRISO 300K VLCC [9] is used for the calculation. On the Table 1, the principal particulars of the model are listed. 3-D panel method is applied to get the frequency transfer function of the linear and nonlinear wave forces on the model[10]. Figure 2 shows the mesh distribution for the model ship. Total 620 panels are distributed on the hull, and the boundary value problem to get the strengths of each sources on the panels is solved. Figure 3 is showing the frequency transfer functions of first order wave forces. Second order wave forces are calculated. considering relative wave elevation ζa, 1st order velocity potential φ(1), and the rotation angle of the ship α.
 
Table 1. Principal particulars of model ship
KRISO 300K VLCC
Lpp(m) 2.340
B(m) 0.424
D(m) 0.219
d(m) 0.148
L.C.G.(m) 0.062
Cb 0.81
 
Fig. 2. 
Mesh distribution for the wave force calculation
 
Fig. 3. Linear frequency transfer function of 1st order wave forces
 
Surge Force
 
Sway Force
 
Yaw Moment







サイトに関するご意見・ご質問・お問合せ   サイトマップ   個人情報保護

日本財団会長笹川陽平ブログはこちら



ランキング
注目度とは?
成果物アクセスランキング
124位
(31,428成果物中)

成果物アクセス数
103,510

集計期間:成果物公開〜現在
更新日: 2019年8月10日

関連する他の成果物

1.MARSIM'03 開催報告
2.本会議及びワークショップ開催状況写真
3.九州における離島住民からみた交通バリアフリー化に関する調査研究?鹿児島県をモデルケースとして? 報告書
  [ 同じカテゴリの成果物 ]


アンケートにご協力
御願いします

この成果物は
お役に立ちましたか?


とても役に立った
まあまあ
普通
いまいち
全く役に立たなかった


この成果物をどのような
目的でご覧になりましたか?


レポート等の作成の
参考資料として
研究の一助として
関係者として参照した
興味があったので
間違って辿り着いただけ


ご意見・ご感想

ここで入力されたご質問・資料請求には、ご回答できません。






その他・お問い合わせ
ご質問は こちら から